首页> 美国卫生研究院文献>Journal of the American Medical Informatics Association : JAMIA >Evaluating the state of the art in disorder recognition and normalization of the clinical narrative
【2h】

Evaluating the state of the art in disorder recognition and normalization of the clinical narrative

机译:评估障碍识别的最新技术和临床叙述的规范化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Objective The ShARe/CLEF eHealth 2013 Evaluation Lab Task 1 was organized to evaluate the state of the art on the clinical text in (i) disorder mention identification/recognition based on Unified Medical Language System (UMLS) definition (Task 1a) and (ii) disorder mention normalization to an ontology (Task 1b). Such a community evaluation has not been previously executed. Task 1a included a total of 22 system submissions, and Task 1b included 17. Most of the systems employed a combination of rules and machine learners.>Materials and methods We used a subset of the Shared Annotated Resources (ShARe) corpus of annotated clinical text—199 clinical notes for training and 99 for testing (roughly 180 K words in total). We provided the community with the annotated gold standard training documents to build systems to identify and normalize disorder mentions. The systems were tested on a held-out gold standard test set to measure their performance.>Results For Task 1a, the best-performing system achieved an F1 score of 0.75 (0.80 precision; 0.71 recall). For Task 1b, another system performed best with an accuracy of 0.59.>Discussion Most of the participating systems used a hybrid approach by supplementing machine-learning algorithms with features generated by rules and gazetteers created from the training data and from external resources.>Conclusions The task of disorder normalization is more challenging than that of identification. The ShARe corpus is available to the community as a reference standard for future studies.
机译:>目标组织了ShARe / CLEF eHealth 2013评估实验室任务1,以根据统一医学语言系统(UMLS)定义评估(i)疾病提及识别/识别中的临床文本的最新状态(任务1a)和(ii)疾病提到对本体的标准化(任务1b)。之前尚未执行过这样的社区评估。任务1a总共包含22个系统提交的内容,任务1b包括17个系统提交的大多数信息。大多数系统使用了规则和机器学习器的组合。>材料和方法,我们使用了共享注释资源(ShARe )带有注释的临床文本的语料库-用于培训的199个临床笔记和用于测试的99个临床笔记(总共约180 K字)。我们向社区提供了带注释的黄金标准培训文件,以建立识别和规范疾病提及的系统。这些系统在坚持不懈的金标准测试仪上进行了测试,以衡量其性能。>结果对于任务1a,性能最佳的系统的F1得分为0.75(精度为0.80;召回率为0.71)。对于任务1b,另一个系统的性能最好,精度为0.59。>讨论大多数参与系统使用混合方法,通过对机器学习算法进行补充,以补充由训练数据和规则创建的规则和地名词典生成的功能。 >结论:正常化任务比鉴定任务更具挑战性。 ShARe语料库可供社区使用,作为将来研究的参考标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号