首页> 美国卫生研究院文献>Journal of the American Medical Informatics Association : JAMIA >Predicting inpatient clinical order patterns with probabilistic topic models vs conventional order sets
【2h】

Predicting inpatient clinical order patterns with probabilistic topic models vs conventional order sets

机译:使用概率主题模型与常规顺序集预测住院患者的临床顺序模式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Objective: Build probabilistic topic model representations of hospital admissions processes and compare the ability of such models to predict clinical order patterns as compared to preconstructed order sets. >Materials and Methods: The authors evaluated the first 24 hours of structured electronic health record data for > 10 K inpatients. Drawing an analogy between structured items (e.g., clinical orders) to words in a text document, the authors performed latent Dirichlet allocation probabilistic topic modeling. These topic models use initial clinical information to predict clinical orders for a separate validation set of > 4 K patients. The authors evaluated these topic model-based predictions vs existing human-authored order sets by area under the receiver operating characteristic curve, precision, and recall for subsequent clinical orders. >Results: Existing order sets predict clinical orders used within 24 hours with area under the receiver operating characteristic curve 0.81, precision 16%, and recall 35%. This can be improved to 0.90, 24%, and 47% (P < 10−20) by using probabilistic topic models to summarize clinical data into up to 32 topics. Many of these latent topics yield natural clinical interpretations (e.g., “critical care,” “pneumonia,” “neurologic evaluation”). >Discussion: Existing order sets tend to provide nonspecific, process-oriented aid, with usability limitations impairing more precise, patient-focused support. Algorithmic summarization has the potential to breach this usability barrier by automatically inferring patient context, but with potential tradeoffs in interpretability. >Conclusion: Probabilistic topic modeling provides an automated approach to detect thematic trends in patient care and generate decision support content. A potential use case finds related clinical orders for decision support.
机译:>目标:建立医院入院流程的概率主题模型表示,并与预先构建的订单集相比,比较此类模型预测临床订单模式的能力。 >材料和方法:作者评估了> 10K住院患者的头24小时结构化电子健康记录数据。作者在文本文档中的结构化项目(例如临床订单)与单词之间进行类比,作者执行了潜在的Dirichlet分配概率主题建模。这些主题模型使用初始临床信息来预测> 4 K个患者的单独验证集的临床顺序。作者评估了这些基于主题模型的预测与接收者操作特征曲线下的面积,精度和后续临床订单的召回率之间的现有人工授权订单集。 >结果:现有订单集可预测24小时内使用的临床订单,接收器工作特征曲线下的面积为0.81,精度为16%,召回率为35%。通过使用概率主题模型将临床数据总结为多达32个主题,可以将其提高到0.90、24%和47%(P <10 -20 )。这些潜在话题中有许多产生自然的临床解释(例如“重症监护”,“肺炎”,“神经学评估”)。 >讨论:现有的订单集通常会提供非特定的,面向过程的帮助,而可用性方面的限制会削弱以患者为中心的精确支持。通过自动推断患者的语境,算法汇总有可能突破此可用性障碍,但在可解释性方面可能会有所取舍。 >结论:概率主题建模提供了一种自动方法来检测患者护理中的主题趋势并生成决策支持内容。一个潜在的用例会找到相关的临床订单以提供决策支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号