首页> 美国卫生研究院文献>Brain >Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG
【2h】

Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG

机译:Epilepsyecosystem.org:长期人类颅内脑电图的人群来源可再现性癫痫发作预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate seizure prediction will transform epilepsy management by offering warnings to patients or triggering interventions. However, state-of-the-art algorithm design relies on accessing adequate long-term data. Crowd-sourcing ecosystems leverage quality data to enable cost-effective, rapid development of predictive algorithms. A crowd-sourcing ecosystem for seizure prediction is presented involving an international competition, a follow-up held-out data evaluation, and an online platform, Epilepsyecosystem.org, for yielding further improvements in prediction performance. Crowd-sourced algorithms were obtained via the ‘Melbourne-University AES-MathWorks-NIH Seizure Prediction Challenge’ conducted at kaggle.com. Long-term continuous intracranial electroencephalography (iEEG) data (442 days of recordings and 211 lead seizures per patient) from prediction-resistant patients who had the lowest seizure prediction performances from the NeuroVista Seizure Advisory System clinical trial were analysed. Contestants (646 individuals in 478 teams) from around the world developed algorithms to distinguish between 10-min inter-seizure versus pre-seizure data clips. Over 10 000 algorithms were submitted. The top algorithms as determined by using the contest data were evaluated on a much larger held-out dataset. The data and top algorithms are available online for further investigation and development. The top performing contest entry scored 0.81 area under the classification curve. The performance reduced by only 6.7% on held-out data. Many other teams also showed high prediction reproducibility. Pseudo-prospective evaluation demonstrated that many algorithms, when used alone or weighted by circadian information, performed better than the benchmarks, including an average increase in sensitivity of 1.9 times the original clinical trial sensitivity for matched time in warning. These results indicate that clinically-relevant seizure prediction is possible in a wider range of patients than previously thought possible. Moreover, different algorithms performed best for different patients, supporting the use of patient-specific algorithms and long-term monitoring. The crowd-sourcing ecosystem for seizure prediction will enable further worldwide community study of the data to yield greater improvements in prediction performance by way of competition, collaboration and synergism.
机译:准确的癫痫发作预测将通过向患者发出警告或触发干预措施来改变癫痫的治疗方法。但是,最新的算法设计依赖于访问足够的长期数据。众包生态系统利用质量数据来实现具有成本效益的快速开发预测算法。提出了用于癫痫发作预测的众包生态系统,其中涉及国际竞赛,后续的后续数据评估以及在线平台Epilepsyecosystem.org,以进一步改善预测性能。通过在kaggle.com上进行的“墨尔本大学AES-MathWorks-NIH癫痫发作预测挑战”获得了来自人群的算法。分析了来自NeuroVista癫痫发作咨询系统临床试验中癫痫预测表现最低的预测耐药患者的长期连续颅内脑电图(iEEG)数据(每位患者442天的记录和211例铅中毒)。来自世界各地的参赛者(478个小组中的646人)开发了算法,以区分10分钟发作之间和发作之前的数据片段。提交了超过1万种算法。通过使用比赛数据确定的顶级算法是在更大的数据集上进行评估的。数据和顶级算法可在线获得,以进行进一步的研究和开发。表现最佳的比赛参赛作品在分类曲线下的得分为0.81。对于保留的数据,性能仅降低了6.7%。其他许多团队也显示出很高的预测重现性。伪前瞻性评估表明,许多算法在单独使用或通过昼夜节律信息加权时,其性能均优于基准,包括在预警时间相匹配的情况下,灵敏度平均提高了原始临床试验灵敏度的1.9倍。这些结果表明,与以前认为的可能范围相比,与临床相关的癫痫发作预测在更大范围的患者中是可能的。此外,不同的算法对不同的患者效果最佳,从而支持使用特定于患者的算法和长期监控。用于癫痫发作预测的众包生态系统将使全球范围内的数据进一步研究成为可能,从而通过竞争,协作和协同作用在预测性能方面取得更大的进步。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号