首页> 美国卫生研究院文献>Bioinformatics >Imbalanced multi-label learning for identifying antimicrobial peptides and their functional types
【2h】

Imbalanced multi-label learning for identifying antimicrobial peptides and their functional types

机译:用于识别抗菌肽及其功能类型的不平衡多标签学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Motivation: With the rapid increase of infection resistance to antibiotics, it is urgent to find novel infection therapeutics. In recent years, antimicrobial peptides (AMPs) have been utilized as potential alternatives for infection therapeutics. AMPs are key components of the innate immune system and can protect the host from various pathogenic bacteria. Identifying AMPs and their functional types has led to many studies, and various predictors using machine learning have been developed. However, there is room for improvement; in particular, no predictor takes into account the lack of balance among different functional AMPs.>Results: In this paper, a new synthetic minority over-sampling technique on imbalanced and multi-label datasets, referred to as ML-SMOTE, was designed for processing and identifying AMPs’ functional families. A novel multi-label classifier, MLAMP, was also developed using ML-SMOTE and grey pseudo amino acid composition. The classifier obtained 0.4846 subset accuracy and 0.16 hamming loss.>Availability and Implementation: A user-friendly web-server for MLAMP was established at .>Contacts: or
机译:>动机:随着对抗生素的感染抵抗力的迅速提高,迫切需要找到新颖的感染疗法。近年来,抗菌肽(AMPs)已被用作感染治疗剂的潜在替代品。 AMPs是先天免疫系统的关键组成部分,可以保护宿主免受各种病原细菌的侵害。识别AMP及其功能类型导致了许多研究,并且已经开发了使用机器学习的各种预测器。但是,仍有改进的空间。特别是,没有预测变量会考虑到不同功能AMP之间缺乏平衡。>结果:本文针对不平衡和多标签数据集提出了一种新的合成少数群体过采样技术,称为ML -SMOTE专为处理和识别AMP的功能系列而设计。还使用ML-SMOTE和灰色伪氨基酸成分开发了一种新型的多标记分类器MLAMP。分类器获得0.4846的子集精度和0.16的汉明损失。>可用性和实现:在。>联系人:或上建立了用于MLAMP的用户友好的Web服务器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号