首页> 美国卫生研究院文献>Acta Crystallographica. Section D Structural Biology >Crystallography on a chip – without the chip: sheet-on-sheet sandwich
【2h】

Crystallography on a chip – without the chip: sheet-on-sheet sandwich

机译:芯片上的晶体学–不带芯片:片上三明治

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Crystallography chips are fixed-target supports consisting of a film (for example Kapton) or wafer (for example silicon) that is processed using semiconductor-microfabrication techniques to yield an array of wells or through-holes in which single microcrystals can be lodged for raster-scan probing. Although relatively expensive to fabricate, chips offer an efficient means of high-throughput sample presentation for serial diffraction data collection at synchrotron or X-ray free-electron laser (XFEL) sources. Truly efficient loading of a chip (one microcrystal per well and no wastage during loading) is nonetheless challenging. The wells or holes must match the microcrystal size of interest, requiring that a large stock of chips be maintained. Raster scanning requires special mechanical drives to step the chip rapidly and with micrometre precision from well to well. Here, a ‘chip-less’ adaptation is described that essentially eliminates the challenges of loading and precision scanning, albeit with increased, yet still relatively frugal, sample usage. The device consists simply of two sheets of Mylar with the crystal solution sandwiched between them. This sheet-on-sheet (SOS) sandwich structure has been employed for serial femtosecond crystallography data collection with micrometre-sized crystals at an XFEL. The approach is also well suited to time-resolved pump–probe experiments, in particular for long time delays. The SOS sandwich enables measurements under XFEL beam conditions that would damage conventional chips, as documented here. The SOS sheets hermetically seal the sample, avoiding desiccation of the sample provided that the X-ray beam does not puncture the sheets. This is the case with a synchrotron beam but not with an XFEL beam. In the latter case, desiccation, setting radially outwards from each punched hole, sets lower limits on the speed and line spacing of the raster scan. It is shown that these constraints are easily accommodated.
机译:晶体学芯片是由膜(例如Kapton)或晶片(例如硅)组成的固定目标支撑物,使用半导体微细加工技术对其进行处理,以产生一系列孔或通孔,可在其中放置单个微晶以进行光栅化-扫描探测。尽管制造起来相对昂贵,但是芯片为在同步加速器或X射线自由电子激光(XFEL)光源上进行连续衍射数据收集提供了一种高通量样品表示的有效方法。然而,真正有效地装载芯片(每孔一个微晶,并且在装载过程中没有浪费)仍然具有挑战性。孔或孔必须与目标微晶尺寸匹配,从而需要保持大量切屑。光栅扫描需要特殊的机械驱动器,以使芯片之间的微米级精度快速步进。在这里,我们描述了一种“无芯片”适应方案,尽管增加了样本使用量,但仍相对节省,但基本上消除了加载和精确扫描的挑战。该设备仅由两片聚酯薄膜组成,而晶体溶液则夹在它们之间。这种片上(SOS)夹层结构已被用于XFEL上具有微米级晶体的连续飞秒晶体学数据收集。该方法也非常适合于时间分辨的泵浦探针实验,尤其是对于长时间延迟的实验。 SOS三明治结构可在XFEL光束条件下进行测量,这会损坏常规芯片,如此处所述。 SOS板将样品密封,如果X射线不刺穿板,则可以避免样品干燥。同步加速器光束就是这种情况,而XFEL光束则不是这种情况。在后一种情况下,从每个穿孔径向向外设置的干燥设置了光栅扫描的速度和行间距的下限。结果表明,这些约束很容易得到解决。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号