首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Modeling Fabrication and Testing of a Customizable Micromachined Hotplate for Sensor Applications
【2h】

Modeling Fabrication and Testing of a Customizable Micromachined Hotplate for Sensor Applications

机译:用于传感器应用的可定制微加工热板的建模制造和测试

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the sensors field the active sensing material frequently needs a controlled temperature in order to work properly. In microsystems technology, micro-machined hotplates represent a platform consisting of a thin suspended membrane where the sensing material can be deposited, usually integrating electrical stimuli and temperature readout. The micro-hotplate ensures a series of advantages such as miniaturized size, fast response, high sensitivity, low power consumption and selectivity for chemical sensing. This work compares the coplanar and the buried approach for the micro-hotplate heaters design with the aim to optimize the fabrication process and to propose a guideline for the choice of the suitable design with respect to the applications. In particular, robust Finite Element Method (FEM) models are set up in order to predict the electrical and thermal behavior of the micro-hotplates. The multiphysics approach used for the simulation allows to match as close as possible the actual device to the predictive model: geometries, materials, physics have been carefully linked to the fabricated devices to obtain the best possible accuracy. The materials involved in the fabrication process are accurately selected in order to improve the yield of the process and the performance of the devices. The fabricated micro-hotplates are able to warm the active region up to 400 °C (with a corresponding power consumption equal to 250 mW @ 400 °C) with a uniform temperature distribution in the buried micro-hotplate and a controlled temperature gradient in the coplanar one. A response time of about 70 ms was obtained on the virtual model, which perfectly agrees with the one measured on the fabricated device. Besides morphological, electrical and thermal characterizations, this work includes reliability tests in static and dynamic modes.
机译:在传感器领域,活性传感材料经常需要受控的温度才能正常工作。在微系统技术中,微加工的热板代表一个平台,该平台由薄的悬浮膜组成,可以在其中沉积传感材料,通常将电刺激和温度读数集成在一起。微热板确保了一系列优点,例如尺寸小,响应速度快,灵敏度高,功耗低以及化学传感的选择性。这项工作比较了微热板加热器设计的共面和埋入方式,目的是优化制造工艺,并针对应用选择合适的设计提供指导。特别地,建立鲁棒的有限元方法(FEM)模型以预测微热板的电和热行为。用于仿真的多物理场方法可以使实际设备与预测模型尽可能接近:几何形状,材料,物理已经与制造的设备仔细地链接在一起,以获得最佳的精度。精确选择制造过程中涉及的材料,以提高过程的成品率和器件的性能。所制造的微热板能够将活动区域加热到最高400°C(400°C时相应的功耗等于250 mW),并且埋入式微热板中的温度分布均匀,并且在热板上的温度梯度可控。共面的在虚拟模型上获得了大约70毫秒的响应时间,这与在装配好的设备上测得的响应时间完全吻合。除了形态,电气和热特性外,这项工作还包括静态和动态模式下的可靠性测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号