首页> 美国卫生研究院文献>American Journal of Human Genetics >Efficient Variant Set Mixed Model Association Tests for Continuous and Binary Traits in Large-Scale Whole-Genome Sequencing Studies
【2h】

Efficient Variant Set Mixed Model Association Tests for Continuous and Binary Traits in Large-Scale Whole-Genome Sequencing Studies

机译:大规模全基因组测序研究中连续和二元性状的有效变异集混合模型关联检验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With advances in whole-genome sequencing (WGS) technology, more advanced statistical methods for testing genetic association with rare variants are being developed. Methods in which variants are grouped for analysis are also known as variant-set, gene-based, and aggregate unit tests. The burden test and sequence kernel association test (SKAT) are two widely used variant-set tests, which were originally developed for samples of unrelated individuals and later have been extended to family data with known pedigree structures. However, computationally efficient and powerful variant-set tests are needed to make analyses tractable in large-scale WGS studies with complex study samples. In this paper, we propose the variant-set mixed model association tests (SMMAT) for continuous and binary traits using the generalized linear mixed model framework. These tests can be applied to large-scale WGS studies involving samples with population structure and relatedness, such as in the National Heart, Lung, and Blood Institute’s Trans-Omics for Precision Medicine (TOPMed) program. SMMATs share the same null model for different variant sets, and a virtue of this null model, which includes covariates only, is that it needs to be fit only once for all tests in each genome-wide analysis. Simulation studies show that all the proposed SMMATs correctly control type I error rates for both continuous and binary traits in the presence of population structure and relatedness. We also illustrate our tests in a real data example of analysis of plasma fibrinogen levels in the TOPMed program (n = 23,763), using the Analysis Commons, a cloud-based computing platform.
机译:随着全基因组测序(WGS)技术的进步,用于测试与稀有变异的遗传关联的更高级的统计方法正在开发中。将变体分组进行分析的方法也称为变体集,基于基因的测试和集合单元测试。负担测试和序列核关联测试(SKAT)是两种广泛使用的变体集测试,最初是为不相关个体的样本开发的,后来又扩展到具有已知谱系结构的家庭数据。但是,需要进行计算有效且功能强大的变量集测试,以使在具有复杂研究样本的大规模WGS研究中,分析变得易于处理。在本文中,我们提出了使用广义线性混合模型框架的连续性和二进制性状的变集混合模型关联测试(SMMAT)。这些测试可用于涉及人群结构和相关性的样本的大规模WGS研究,例如美国国家心脏,肺和血液研究所的Trans-Omics for Precision Medicine(TOPMed)计划。 SMMAT对于不同的变异集共享相同的无效模型,并且该无效模型的一个优点(仅包括协变量)是,对于每个基因组范围的分析中的所有测试,它仅需要拟合一次。仿真研究表明,在存在种群结构和相关性的情况下,所有提出的SMMAT都能正确控制连续性和二元性状的I型错误率。我们还使用基于云的计算平台Analysis Commons在TOPMed程序(n = 23,763)中分析血浆纤维蛋白原水平的真实数据示例中说明了我们的测试。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号