首页> 美国卫生研究院文献>American Journal of Human Genetics >Retrospective Binary-Trait Association Test Elucidates Genetic Architecture of Crohn Disease
【2h】

Retrospective Binary-Trait Association Test Elucidates Genetic Architecture of Crohn Disease

机译:回顾性二进制特质关联测试阐明了克罗恩病的遗传结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In genetic association testing, failure to properly control for population structure can lead to severely inflated type 1 error and power loss. Meanwhile, adjustment for relevant covariates is often desirable and sometimes necessary to protect against spurious association and to improve power. Many recent methods to account for population structure and covariates are based on linear mixed models (LMMs), which are primarily designed for quantitative traits. For binary traits, however, LMM is a misspecified model and can lead to deteriorated performance. We propose CARAT, a binary-trait association testing approach based on a mixed-effects quasi-likelihood framework, which exploits the dichotomous nature of the trait and achieves computational efficiency through estimating equations. We show in simulation studies that CARAT consistently outperforms existing methods and maintains high power in a wide range of population structure settings and trait models. Furthermore, CARAT is based on a retrospective approach, which is robust to misspecification of the phenotype model. We apply our approach to a genome-wide analysis of Crohn disease, in which we replicate association with 17 previously identified regions. Moreover, our analysis on 5p13.1, an extensively reported region of association, shows evidence for the presence of multiple independent association signals in the region. This example shows how CARAT can leverage known disease risk factors to shed light on the genetic architecture of complex traits.
机译:在基因关联测试中,如果无法正确控制种群结构,可能会导致1型错误和功率损失严重增加。同时,通常需要对相关协变量进行调整,有时需要调整以防止虚假关联并提高功效。许多用于解释总体结构和协变量的方法都是基于线性混合模型(LMM),而线性混合模型主要是针对数量性状设计的。但是,对于二进制特征,LMM是一个错误指定的模型,并且可能导致性能下降。我们提出了CARAT,一种基于混合效应拟似然框架的二元特征关联测试方法,该方法利用了特征的二分性质,并通过估计方程来实现计算效率。我们在模拟研究中显示,CARAT始终优于现有方法,并在各种人口结构设置和特征模型中保持较高的威力。此外,CARAT基于回顾性方法,对表型模型的错误指定具有鲁棒性。我们将我们的方法应用于克罗恩病的全基因组分析,其中我们复制了与17个先前确定的区域的关联。此外,我们对5p13.1(一个广泛报道的关联区域)的分析显示了该区域中存在多个独立关联信号的证据。这个例子说明了CARAT如何利用已知的疾病危险因素阐明复杂性状的遗传结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号