首页> 美国卫生研究院文献>AMIA Annual Symposium Proceedings >Identification of low frequency patterns in backpropagation neural networks.
【2h】

Identification of low frequency patterns in backpropagation neural networks.

机译:反向传播神经网络中的低频模式识别。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although neural networks have been widely applied to medical problems in recent years, their applicability has been limited for a variety of reasons. One of these barriers has been the inability to discriminate rare classes of solutions (i.e., the identification of categories that are infrequent). In this article, I demonstrate that a system of hierarchical neural networks (HNN) can overcome the problem of recognizing low frequency patterns, and therefore can improve the prediction power of neural-network systems. HNN are designed according to a divide-and-conquer approach: Triage networks are able to discriminate supersets that contain the infrequent pattern, and these supersets are then used by Specialized networks, which discriminate the infrequent pattern from the other ones in the superset. The supersets that are discriminated by the Triage networks are based on pattern similarity. The application of multilayered neural networks in more than one step allows the prior probability of a given pattern to increase at each step, provided that the predictive power of the network at the previous level is high. The method has been applied to one artificial set and one real set of data. In the artificial set, the distribution of the patterns was known and no noise was present. In this experiment, the HNN provided better discrimination than a standard neural network for all classes. In a real data set of nine thousand patients who were suspected of having thyroid disorders, the HNN also provided higher sensitivity than its corresponding standard neural network (without a corresponding decay in specificity) given the same time constraints.(ABSTRACT TRUNCATED AT 250 WORDS)
机译:尽管近年来神经网络已广泛应用于医疗问题,但是由于多种原因,其应用受到了限制。这些障碍之一是无法区分稀有类别的解决方案(即,识别不常见的类别)。在本文中,我证明了分层神经网络(HNN)系统可以克服识别低频模式的问题,因此可以提高神经网络系统的预测能力。 HNN是根据分而治之的方法设计的:分类网络能够区分包含不频繁模式的超集,然后这些超集由Specialized网络使用,后者将不频繁的模式与超集中的其他模式区分开。通过Triage网络区分的超集基于模式相似性。多层神经网络在一个以上的步骤中的应用允许给定模式在每个步骤中的先验概率增加,前提是该网络在先前级别的预测能力很高。该方法已应用于一组人工数据和一组真实数据。在人造布景中,图案的分布是已知的,并且没有噪音。在该实验中,对于所有类别,HNN均比标准神经网络提供更好的判别能力。在一个有9000名怀疑患有甲状腺疾病的患者的真实数据集中,在相同的时间限制下,HNN的灵敏度也高于其相应的标准神经网络(没有相应的特异性下降)(摘要截断为250个字)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号