首页> 美国卫生研究院文献>Annals of Translational Medicine >Metabolomics: a challenge for detecting and monitoring inborn errors of metabolism
【2h】

Metabolomics: a challenge for detecting and monitoring inborn errors of metabolism

机译:代谢组学:检测和监测先天性代谢错误的挑战

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Timely newborn screening and genetic profiling are crucial in early recognition and treatment of inborn errors of metabolism (IEMs). A proposed nosology of IEMs has inserted 1,015 well-characterized IEMs causing alterations in specific metabolic pathways. With the increasing expansion of metabolomics in clinical biochemistry and laboratory medicine communities, several research groups have focused their interest on the analysis of metabolites and their interconnections in IEMs. Metabolomics has the potential to extend metabolic information, thus allowing to achieve an accurate diagnosis for the individual patient and to discover novel IEMs. Structural and functional information on 247 metabolites associated with 147 IEMs and 202 metabolic pathways involved in various IEMs have been reported in the human metabolome data base (HMDB). For each metabolic gene, a new computational approach can be developed for predicting a set of metabolites, whose concentration is predicted to change after gene knockout in urine, blood and other biological fluids. Both targeted and untargeted mass spectrometry (MS)-based metabolomic approaches have been used to expand the range of disease-associate metabolites. The quantitative targeted approach, in conjunction with chemometrics, can be considered a basic tool for validating known diagnostic biomarkers in various metabolic disorders. The untargeted approach broadens the identification of new biomarkers in known IEMs and allows pathways analysis. Urine is an ideal biological fluid for metabolomics in neonatology; however, the lack of standardization of preanalytical phase may generate potential interferences in metabolomic studies. The integration of genomic and metabolomic data represents the current challenge for improving diagnosis and prognostication of IEMs. The goals consist in identifying both metabolically active loci and genes relevant to a disease phenotype, which means deriving disease-specific biological insights.
机译:及时的新生儿筛查和基因谱分析对早期识别和治疗先天性代谢错误(IEM)至关重要。提议的IEM病态学已插入1,015个特征明确的IEM,从而引起特定代谢途径的改变。随着临床生物化学和实验室医学界中代谢组学的不断扩展,一些研究小组将兴趣集中在IEM中代谢物及其相互关系的分析上。代谢组学具有扩展代谢信息的潜力,因此可以实现对单个患者的准确诊断并发现新型IEM。人类代谢组数据库(HMDB)中已报告了与147种IEM相关的247种代谢物的结构和功能信息以及与各种IEM相关的202种代谢途径。对于每个代谢基因,可以开发一种新的计算方法来预测一组代谢物,预测其浓度会在尿液,血液和其他生物流体中基因敲除后发生变化。基于目标和非目标质谱(MS)的代谢组学方法均已用于扩大疾病相关代谢物的范围。与化学计量学相结合的定量靶向方法可被视为验证各种代谢性疾病中已知诊断生物标志物的基本工具。这种无针对性的方法拓宽了已知IEM中新生物标志物的鉴定范围,并允许进行途径分析。尿液是新生儿医学中代谢组学的理想生物液体。但是,缺乏分析前阶段的标准化可能会在代谢组学研究中产生潜在的干扰。基因组和代谢组学数据的集成代表了当前改善IEM诊断和预后的挑战。目标包括识别代谢活性基因座和与疾病表型有关的基因,这意味着获得疾病特异性的生物学见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号