首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Metabolic Engineering of an ATP-Neutral Embden-Meyerhof-Parnas Pathway in Corynebacterium glutamicum: Growth Restoration by an Adaptive Point Mutation in NADH Dehydrogenase
【2h】

Metabolic Engineering of an ATP-Neutral Embden-Meyerhof-Parnas Pathway in Corynebacterium glutamicum: Growth Restoration by an Adaptive Point Mutation in NADH Dehydrogenase

机译:谷氨酸棒杆菌中ATP中性Embden-Meyerhof-Parnas途径的代谢工程:通过NADH脱氢酶中的自适应点突变来恢复生长。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Corynebacterium glutamicum uses the Embden-Meyerhof-Parnas pathway of glycolysis and gains 2 mol of ATP per mol of glucose by substrate-level phosphorylation (SLP). To engineer glycolysis without net ATP formation by SLP, endogenous phosphorylating NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was replaced by nonphosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GapN) from Clostridium acetobutylicum, which irreversibly converts glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate (3-PG) without generating ATP. As shown recently (S. Takeno, R. Murata, R. Kobayashi, S. Mitsuhashi, and M. Ikeda, Appl Environ Microbiol 76:7154–7160, 2010, ), this ATP-neutral, NADPH-generating glycolytic pathway did not allow for the growth of Corynebacterium glutamicum with glucose as the sole carbon source unless hitherto unknown suppressor mutations occurred; however, these mutations were not disclosed. In the present study, a suppressor mutation was identified, and it was shown that heterologous expression of udhA encoding soluble transhydrogenase from Escherichia coli partly restored growth, suggesting that growth was inhibited by NADPH accumulation. Moreover, genome sequence analysis of second-site suppressor mutants that were able to grow faster with glucose revealed a single point mutation in the gene of non-proton-pumping NADH:ubiquinone oxidoreductase (NDH-II) leading to the amino acid change D213G, which was shared by these suppressor mutants. Since related NDH-II enzymes accepting NADPH as the substrate possess asparagine or glutamine residues at this position, D213G, D213N, and D213Q variants of C. glutamicum NDH-II were constructed and were shown to oxidize NADPH in addition to NADH. Taking these findings together, ATP-neutral glycolysis by the replacement of endogenous NAD-dependent GAPDH with NADP-dependent GapN became possible via oxidation of NADPH formed in this pathway by mutant NADPH-accepting NDH-IID213G and thus by coupling to electron transport phosphorylation (ETP).
机译:谷氨酸棒杆菌利用Embden-Meyerhof-Parnas途径进行糖酵解,并通过底物水平磷酸化(SLP)获得每摩尔葡萄糖2摩尔ATP。为了在不通过SLP形成净ATP的情况下进行糖酵解工程设计,将内源性磷酸化NAD依赖性甘油醛3磷酸脱氢酶(GAPDH)替换为乙酰丁酸梭菌的非磷酸化NADP依赖性甘油醛3磷酸脱氢酶(GapN),后者不可逆地转化甘油3 -磷酸(GAP)生成3-磷酸甘油酸酯(3-PG),而不会生成ATP。如最近所示(S. Takeno,R。Murata,R。Kobayashi,S。Mitsuhashi和M. Ikeda,Appl Environ Microbiol 76:7154-7160,2010,),这种产生ATP的中性,NADPH生成的糖酵解途径没有除非迄今为止尚未发现抑制基因突变,否则允许以葡萄糖为唯一碳源的谷氨酸棒杆菌的生长;但是,这些突变没有被公开。在本研究中,确定了抑制突变,并且表明编码来自大肠杆菌的可溶性转氢酶的udhA的异源表达部分恢复了生长,这表明NADPH的积累抑制了生长。此外,对能够随葡萄糖生长更快的第二位抑制基因突变体进行的基因组序列分析显示,非质子泵浦NADH:泛醌氧化还原酶(NDH-II)基因中存在单点突变,导致氨基酸变化D213G,这些抑制突变体共有这些。由于接受NADPH作为底物的相关NDH-II酶在该位置具有天冬酰胺或谷氨酰胺残基,因此构建了谷氨酸棒杆菌NDH-II的D213G,D213N和D213Q变体,并显示除NADH外还氧化NADPH。综上所述,通过突变NADPH-接受的NDH-II D213G 和NADPH-接受的NADPH的氧化,可以通过内源NAD依赖性GAPDH替换NADP依赖性GapN替代ATP中性糖酵解。因此,通过偶联至电子传输磷酸化(ETP)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号