首页> 外文学位 >Metabolic engineering of cofactors (NADH/NAD+) in Escherichia coli.
【24h】

Metabolic engineering of cofactors (NADH/NAD+) in Escherichia coli.

机译:大肠杆菌中辅助因子(NADH / NAD +)的代谢工程。

获取原文
获取原文并翻译 | 示例

摘要

Metabolic engineering studies have generally focused on manipulating enzyme levels. However, cofactors play a major role in the production of fermentation products. This thesis provides the first systematic study of cofactor manipulations for the NADH/NAD+ cofactor pair and establishes these manipulations as an additional tool for metabolic engineering. This work investigates external and genetic means of increasing the availability of NADH and the total levels of NADH/+) and examines the effect of these manipulations on the distribution of metabolites in Escherichia coli. These strategies include feeding carbon sources with different oxidation states, overexpressing an enzyme that can regenerate NADH, overexpressing an enzyme in the NAD salvage pathway (NAPRTase; pncB), and eliminating NADH competing pathways.; Feeding a more reduced carbon source (sorbitol) or regenerating NADH by overexpression of a heterologous NAD+-dependent FDH increased the NADH availability and provoked a significant change in the final metabolite distribution both under anaerobic and aerobic conditions. Anaerobically, the production of reduced metabolites was favored, as evidenced by a dramatic increase in the ethanol to acetate ratio (Et/Ac) and a shift towards ethanol as the major fermentation product. Aerobically, the increased availability of NADH induced a shift to fermentation even in the presence of oxygen. The NADH regeneration system doubled the maximum yield of NADH from 2 to 4 mol NADH/mol glucose consumed. This system also allows the uncoupling of NADH generation from carbon source oxidation by formate addition.; Overexpression of the pncB gene in chemostat experiments increased the total NAD levels, decreased the NADH/NAD+ ratio, and did not significantly redistribute the metabolic fluxes. However, under anaerobic tube conditions, this manipulation decreased lactate production and increased the Et/Ac ratio by 2-fold, suggesting that the higher NAD levels increase the rate of NADH-dependent pathways (ethanol). Chemostat results from all manipulations studied imply that NADH availability rather than the NADH/NAD+ ratio dictates the metabolic flux distribution.; This work also investigates the effect of these cofactor manipulations on the production of a model chemical that requires NADH, 1,2-propanediol. Results showed that our current 1,2-PD pathway is not limited by the availability of NADH.
机译:代谢工程研究通常集中在操纵酶水平上。但是,辅因子在发酵产物的生产中起主要作用。本论文为NADH / NAD +辅因子对的辅因子操纵提供了第一个系统的研究,并将这些操纵建立为代谢工程的附加工具。这项工作研究了增加NADH利用率和NADH / +总水平的外部和遗传手段,并研究了这些操作对大肠杆菌代谢产物分布的影响。这些策略包括供给具有不同氧化态的碳源,过表达可再生NADH的酶,在NAD挽救途径中过表达一种酶(NAPRTase; pncB )以及消除NADH竞争途径。通过过量表达异源NAD +依赖的FDH来喂食更多还原的碳源(山梨糖醇)或再生NADH可以增加NADH的利用率,并在厌氧和需氧条件下引起最终代谢物分布的显着变化。厌氧地,减少的代谢产物的产生是有利的,如乙醇与乙酸盐之比(Et / Ac)的急剧增加以及向乙醇作为主要发酵产物的转变所证明。在有氧条件下,即使在有氧条件下,NADH的利用率增加也导致了向发酵的转变。 NADH再生系统将NADH的最大产率从2 mol NADH / mol消耗的葡萄糖增加了一倍。该系统还允许通过添加甲酸将NADH生成与碳源氧化解耦。在恒化器实验中, pncB 基因的过表达增加了总NAD水平,降低了NADH / NAD +比率,并且没有显着重新分配代谢通量。但是,在厌氧管条件下,这种操作降低了乳酸的产生,并使Et / Ac比增加了2倍,这表明较高的NAD水平会增加NADH依赖性途径(乙醇)的速率。所有研究的化学平衡结果表明,NADH的利用率而不是NADH / NAD +的比值决定了代谢通量的分布。这项工作还调查了这些辅因子操纵对需要NADH,1,2-丙二醇的模型化学品的生产的影响。结果表明,我们目前的1,2-PD途径不受NADH可用性的限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号