首页> 美国卫生研究院文献>Stem Cell Reports >TGF-β Signaling Plays an Essential Role in the Lineage Specification of Mesenchymal Stem/Progenitor Cells in Fetal Bone Marrow
【2h】

TGF-β Signaling Plays an Essential Role in the Lineage Specification of Mesenchymal Stem/Progenitor Cells in Fetal Bone Marrow

机译:TGF-β信号传导在胎儿骨髓间充质干/祖细胞谱系规范中起重要作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe bone marrow microenvironment is uniquely adapted to support hematopoiesis. A complex network of stromal cells in the bone marrow provides key signals that support the proliferation and survival of hematopoietic stem/progenitor cells (). CXCL12-abundant reticular (CAR) cells are perivascular mesenchymal stromal cells that express high levels of CXCL12 and stem cell factor (); they overlap considerably with Leptin-receptor+ stromal cells () and Nestin-GFP+ stromal cells in the bone marrow (). CAR cells and NG2+ arteriolar pericytes produce cytokines and chemokines that play crucial roles in regulating hematopoietic stem cells (HSCs), including CXCL12 and stem cell factor (, , , ). Adipocytes are rare in the bone marrow at birth but increase with aging and after myeloablation (, ). The presence of adipocytes in the bone marrow negatively correlates with hematopoietic activity (). However, a recent study showed that adipocytes promote hematopoietic recovery following myeloablation through production of stem cell factor (), suggesting a context-specific role for adipocytes in regulating hematopoiesis.The development and maintenance of mesenchymal stromal cells in the bone marrow is not well characterized. Lineage tracing studies show that Sp7 (osterix)-cre-targeted mesenchymal stem/progenitor cells (MSPCs) are present in the perichondrium of the future hindlimb by embryonic day 12.5 (E12.5) (, ). These fetal MSPCs transiently give rise to all mesenchymal stromal cells in the bone marrow, including osteoblasts, CAR cells, arteriolar pericytes, and adipocytes. However, these stromal cells are gradually replaced during adulthood. Indeed, a distinct osterix-Cre-targeted MSPC population is present in neonatal bone marrow and gives rise to long-lived mesenchymal stromal cells (). The signals regulating lineage specification of MSPCs also are not well characterized. Omatsu and colleagues, in two separate studies, showed that Foxc1 and Ebf1/Ebf3 contribute to the lineage specification of postnatal MSPCs. Specifically, the Foxc1 transcription factor negative regulates adipocyte differentiation of postnatal MSPCs, while the Ebf1/Ebf3 transcription factors inhibit osteoblast differentiation (href="#bib23" rid="bib23" class=" bibr popnode">Omatsu et al., 2014, href="#bib26" rid="bib26" class=" bibr popnode">Seike et al., 2018).Transforming growth factor β (TGF-β) is an inflammatory cytokine that also may contribute to MSPC differentiation. Cell culture studies show that TGF-β negatively regulates adipocyte and terminal osteoblast differentiation, while stimulating osteoblast progenitor proliferation (href="#bib2" rid="bib2" class=" bibr popnode">Alliston et al., 2001, href="#bib13" rid="bib13" class=" bibr popnode">Ignotz and Massague, 1985, href="#bib28" rid="bib28" class=" bibr popnode">Sparks et al., 1992). Studies examining the role of TGF-β signaling in MSPC differentiation in vivo are limited. Loss of Tgfb1 is associated with bone loss and a deficiency of osteoblasts (href="#bib30" rid="bib30" class=" bibr popnode">Tang et al., 2009). Tgfbr2, encoding TGF-β receptor 2, is required for TGF-β signaling. Deletion of Tgfbr2 using Prx1-Cre, which is active in early limb bud mesenchyme, results in severe skeletal defects and embryonic lethality (href="#bib27" rid="bib27" class=" bibr popnode">Seo and Serra, 2007). href="#bib32" rid="bib32" class=" bibr popnode">Wang et al. (2013) used an osterix-Cre (Osx-Cre) transgene to delete Tgfbr2 in mesenchymal progenitors. They showed that Osx-Cre, Tgfbr2fl/fl mice have impaired tooth development and reduced mineralization of the mandible due to reduced osteoblast differentiation. In humans, genetic alterations leading to enhanced TGF-β signaling are associated with bone dysplasia in Camurati-Engelmann disease (href="#bib31" rid="bib31" class=" bibr popnode">Wallace and Wilcox, 1993). Of note, TGF-β regulates HSC quiescence and hematopoietic recovery following myeloablation (href="#bib5" rid="bib5" class=" bibr popnode">Brenet et al., 2013, href="#bib34" rid="bib34" class=" bibr popnode">Yamazaki et al., 2011, href="#bib38" rid="bib38" class=" bibr popnode">Zhao et al., 2014). Whether TGF-β signaling in mesenchymal stromal cells contributes to these hematopoietic responses is an open question.In this study, we characterize the contribution of TGF-β signaling in MSPCs on the development of mesenchymal stromal cells that comprise the bone marrow hematopoietic niche. We show that loss of TGF-β signaling in Osx-Cre-targeted fetal MSPCs results in alterations in mesenchymal stromal cells, including marked expansions of CAR cells and adipocytes. Both canonical and noncanonical TGF-β signaling in fetal MSPCs contribute to this phenotype. The resulting alterations in mesenchymal stromal cells are associated with a reduced capacity to support HSCs and a shift in hematopoiesis from lymphopoiesis to myelopoiesis. Together, these data suggest that TGF-β plays a key role in the lineage specification of MSPCs and is required for the emergence of a normal hematopoietic niche during fetal bone marrow development.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介骨髓微环境特别适合支持造血功能。骨髓中复杂的基质细胞网络提供了关键信号,支持造血干/祖细胞的增殖和存活。 CXCL12丰富的网状(CAR)细胞是表达高水平CXCL12和干细胞因子的血管周间质基质细胞。它们与骨髓中的Leptin-receptor + 基质细胞和Nestin-GFP + 基质细胞有很大的重叠。 CAR细胞和NG2 + 小动脉周细胞产生细胞因子和趋化因子,它们在调节造血干细胞(HSC)(包括CXCL12和干细胞因子)中起关键作用。脂肪细胞在出生时在骨髓中很少见,但会随着衰老和骨髓消融而增加(,)。骨髓中脂肪细胞的存在与造血活动负相关()。然而,最近的一项研究表明,脂肪细胞通过产生干细胞因子()促进骨髓消融后造血功能的恢复,这表明脂肪细胞在调节造血功能方面具有特定的作用。骨髓间充质基质细胞的发育和维持尚不十分清楚。 。谱系追踪研究显示,在胚胎第12.5天(E12.5)之前,Sp7(osterix)-cre靶向的间充质干/祖细胞(MSPC)存在于未来后肢的软骨膜中。这些胎儿MSPC短暂产生骨髓中的所有间充质基质细胞,包括成骨细胞,CAR细胞,小动脉周细胞和脂肪细胞。然而,这些基质细胞在成年期逐渐被替换。确实,新生儿骨髓中存在独特的以osterix-Cre为靶标的MSPC群体,并产生了长寿命的间充质基质细胞()。调节MSPC谱系规格的信号也没有很好地表征。 Omatsu及其同事在两项单独的研究中表明,Foxc1和Ebf1 / Ebf3有助于产后MSPC的谱系规范。具体来说,Foxc1转录因子负调控产后MSPC的脂肪细胞分化,而Ebf1 / Ebf3转录因子抑制成骨细胞分化(href="#bib23" rid="bib23" class=" bibr popnode"> Omatsu等, 2014 ,href="#bib26" rid="bib26" class=" bibr popnode"> Seike等人,2018 )。转化生长因子β(TGF-β)是一种炎症也可能有助于MSPC分化的细胞因子。细胞培养研究表明,TGF-β负面调节脂肪细胞和终末成骨细胞分化,同时刺激成骨细胞祖细胞增殖(href="#bib2" rid="bib2" class=" bibr popnode"> Alliston等,2001 ,href="#bib13" rid="bib13" class=" bibr popnode"> Ignotz和Massague,1985 ,href =“#bib28” rid =“ bib28” class =“ bibr popnode“> Sparks等,1992 )。研究TGF-β信号传导在体内MSPC分化中作用的研究非常有限。 Tgfb1的丢失与骨丢失和成骨细胞缺乏有关(href="#bib30" rid="bib30" class=" bibr popnode"> Tang等,2009 )。 TGF-β信号转导需要编码Tg-β受体2的Tgfbr2。在早期肢体芽间充质中活跃的Prx1-Cre删除Tgfbr2,会导致严重的骨骼缺陷和胚胎致死率(href="#bib27" rid="bib27" class=" bibr popnode"> Seo和Serra, 2007 )。 href="#bib32" rid="bib32" class=" bibr popnode"> Wang等。 (2013)使用osterix-Cre(Osx-Cre)转基因删除了间充质祖细胞中的Tgfbr2。他们发现,Osx-Cre,Tgfbr2 fl / fl 小鼠由于成骨细胞的分化减少而导致牙齿发育受损和下颌骨矿化减少。在人类中,导致TGF-β信号增强的遗传改变与Camurati-Engelmann病的骨发育异常有关(href="#bib31" rid="bib31" class=" bibr popnode"> Wallace和Wilcox,1993 )。值得注意的是,TGF-β可调节骨髓消融后的HSC静止和造血功能恢复(href="#bib5" rid="bib5" class=" bibr popnode"> Brenet et al。,2013 ,href = “#bib34” rid =“ bib34” class =“ bibr popnode”>山崎等人,2011 ,href="#bib38" rid="bib38" class=" bibr popnode">赵等人,2014 )。间充质基质细胞中的TGF-β信号是否有助于这些造血反应是一个悬而未决的问题。,我们表征了MSPCs中TGF-β信号传导对包括骨髓造血位的间充质基质细胞发育的贡献。我们表明,Osx-Cre靶向的胎儿MSPCs中TGF-β信号的丢失导致间充质基质细胞的改变,包括CAR细胞和脂肪细胞的明显扩增。胎儿MSPCs中的典型TGF-β信号和非典型TGF-β信号均有助于该表型。间充质基质细胞的改变与支持HSC的能力降低以及造血功能从淋巴细胞生成转变为骨髓生成有关。总之,这些数据表明TGF-β在MSPCs谱系规范中起关键作用,并且是胎儿骨髓发育过程中正常造血位产生的必需条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号