首页> 美国卫生研究院文献>The Journal of Neuroscience >Coordination of Cellular Pattern-Generating Circuits that Control Limb Movements: The Sources of Stable Differences in Intersegmental Phases
【2h】

Coordination of Cellular Pattern-Generating Circuits that Control Limb Movements: The Sources of Stable Differences in Intersegmental Phases

机译:控制肢体运动的细胞模式产生电路的协调:段间相中的稳定差异的来源。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neuronal mechanisms in nervous systems that keep intersegmental phase lags the same at different frequencies are not well understood. We investigated biophysical mechanisms that permit local pattern-generating circuits in neighboring segments to maintain stable phase differences. We use a modified version of an existing model of the crayfish swimmeret system that is based on three known coordinating neurons and hypothesized intersegmental synaptic connections. Weakly coupled oscillator theory was used to derive coupling functions that predict phase differences between neurons in neighboring segments. We show how features controlling the size of the lag under simplified network configurations combine to create realistic lags in the full network. Using insights from the coupled oscillator theory analysis, we identify an alternative intersegmental connection pattern producing realistic stable phase differences. We show that the persistence of a stable phase lag to changes in frequency can arise from complementary effects on the network with ascending-only or descending-only intersegmental connections.To corroborate the numerical results, we experimentally constructed phase–response curves (PRCs) for two different coordinating interneurons in the swimmeret system by perturbing the firing of individual interneurons at different points in the cycle of swimmeret movement. These curves provide information about the contribution of individual intersegmental connections to the stable phase lag. We also numerically constructed PRCs for individual connections in the model. Similarities between the experimental and numerical PRCs confirm the plausibility of the network configuration that has been proposed and suggest that the same stabilizing balance present in the model underlies the normal phase-constant behavior of the swimmeret system.
机译:在不同频率下保持节间期相滞后的神经系统中的神经元机制尚不清楚。我们研究了生物物理机制,使邻近区段中的局部模式生成电路可以保持稳定的相位差。我们使用小龙虾游泳系统的现有模型的修改版本,该模型基于三个已知的协调神经元和假设的节间突触连接。弱耦合振荡器理论用于推导预测相邻节段中神经元之间相位差的耦合函数。我们展示了在简化的网络配置下控制滞后大小的功能如何结合起来以在整个网络中创建现实的滞后。利用耦合振荡器理论分析的见识,我们确定了产生实际稳定相位差的替代节间连接模式。我们显示出稳定的相位滞后对频率变化的持久性可能源于仅分段或仅分段间连接对网络的互补效应。为了证实数值结果,我们通过实验构建了相位响应曲线(PRC)游泳系统中两个不同的协调神经元,它们通过扰动游泳运动周期中不同点处的单个神经元的发射来实现。这些曲线提供有关各个节间连接对稳定相位滞后的贡献的信息。我们还通过数字方式构造了模型中各个连接的PRC。实验和数值PRCS之间的相似性证实了已经提出的网络配置的合理性,并表明该模型中存在的相同稳定平衡是游泳系统正常相位恒定行为的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号