...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Coordination of cellular pattern-generating circuits that control limb movements: the sources of stable differences in intersegmental phases.
【24h】

Coordination of cellular pattern-generating circuits that control limb movements: the sources of stable differences in intersegmental phases.

机译:控制肢体运动的细胞模式产生电路的协调:节间期稳定差异的来源。

获取原文
获取原文并翻译 | 示例
           

摘要

Neuronal mechanisms in nervous systems that keep intersegmental phase lags the same at different frequencies are not well understood. We investigated biophysical mechanisms that permit local pattern-generating circuits in neighboring segments to maintain stable phase differences. We use a modified version of an existing model of the crayfish swimmeret system that is based on three known coordinating neurons and hypothesized intersegmental synaptic connections. Weakly coupled oscillator theory was used to derive coupling functions that predict phase differences between neurons in neighboring segments. We show how features controlling the size of the lag under simplified network configurations combine to create realistic lags in the full network. Using insights from the coupled oscillator theory analysis, we identify an alternative intersegmental connection pattern producing realistic stable phase differences. We show that the persistence of a stable phase lag to changes in frequency can arise from complementary effects on the network with ascending-only or descending-only intersegmental connections. To corroborate the numerical results, we experimentally constructed phase-response curves (PRCs) for two different coordinating interneurons in the swimmeret system by perturbing the firing of individual interneurons at different points in the cycle of swimmeret movement. These curves provide information about the contribution of individual intersegmental connections to the stable phase lag. We also numerically constructed PRCs for individual connections in the model. Similarities between the experimental and numerical PRCs confirm the plausibility of the network configuration that has been proposed and suggest that the same stabilizing balance present in the model underlies the normal phase-constant behavior of the swimmeret system.
机译:在不同频率下保持节间期相滞后的神经系统中的神经元机制尚不清楚。我们研究了生物物理机制,该机制允许相邻部分中的局部模式生成电路保持稳定的相位差。我们使用小龙虾游泳系统现有模型的修改版本,该模型基于三个已知的协调神经元和假设的节间突触连接。弱耦合振荡器理论用于推导预测相邻节段中神经元之间相位差的耦合函数。我们将展示在简化的网络配置下控制滞后大小的功能如何结合起来以在整个网络中创建现实的滞后。利用耦合振荡器理论分析的见识,我们确定了产生实际稳定相位差的替代节间连接模式。我们表明,稳定的相位滞后对频率变化的持久性可能源于仅分段或仅分段间连接对网络的互补影响。为了证实数值结果,我们通过扰动游泳者运动周期中不同点的单个中子神经的发射,通过实验构造了游泳者系统中两个不同的协调中子的相位响应曲线(PRC)。这些曲线提供有关各个段间连接对稳定相位滞后的贡献的信息。我们还通过数字方式构造了模型中各个连接的PRC。实验和数值PRCS之间的相似性证实了已经提出的网络配置的合理性,并表明该模型中存在的相同稳定平衡是游泳系统正常相位恒定行为的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号