首页> 美国卫生研究院文献>BioData Mining >The prediction accuracy of dynamic mixed-effects models in clustered data
【2h】

The prediction accuracy of dynamic mixed-effects models in clustered data

机译:聚类数据中动态混合效应模型的预测精度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundClinical prediction models often fail to generalize in the context of clustered data, because most models fail to account for heterogeneity in outcome values and covariate effects across clusters. Furthermore, standard approaches for modeling clustered data, including generalized linear mixed-effects models, would not be expected to provide accurate predictions in novel clusters, because such predictions are typically based on the hypothetical mean cluster. We hypothesized that dynamic mixed-effects models, which incorporate data from previous predictions to refine the model for future predictions, would allow for cluster-specific predictions in novel clusters as the model is updated over time, thus improving overall model generalizability.
机译:背景技术临床预测模型通常无法在聚类数据的背景下进行概括,因为大多数模型无法说明结果值的异质性和跨聚类的协变量效应。此外,建模聚类数据的标准方法(包括广义线性混合效应模型)不会期望在新颖聚类中提供准确的预测,因为此类预测通常基于假设均值聚类。我们假设动态混合效果模型结合了先前预测的数据以完善该模型以用于将来的预测,随着模型的不断更新,该模型将允许在新颖聚类中进行特定于聚类的预测,从而提高了模型的总体可推广性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号