首页> 美国卫生研究院文献>Biomicrofluidics >Automated electrotransformation of Escherichia coli on a digital microfluidic platform using bioactivated magnetic beads
【2h】

Automated electrotransformation of Escherichia coli on a digital microfluidic platform using bioactivated magnetic beads

机译:使用生物激活的磁珠在数字微流控平台上自动进行大肠杆菌的电转化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper reports on the use of a digital microfluidic platform to perform multiplex automated genetic engineering (MAGE) cycles on droplets containing Escherichia coli cells. Bioactivated magnetic beads were employed for cell binding, washing, and media exchange in the preparation of electrocompetent cells in the electrowetting-on-dieletric (EWoD) platform. On-cartridge electroporation was used to deliver oligonucleotides into the cells. In addition to the optimization of a magnetic bead-based benchtop protocol for generating and transforming electrocompetent E. coli cells, we report on the implementation of this protocol in a fully automated digital microfluidic platform. Bead-based media exchange and electroporation pulse conditions were optimized on benchtop for transformation frequency to provide initial parameters for microfluidic device trials. Benchtop experiments comparing electrotransformation of free and bead-bound cells are presented. Our results suggest that dielectric shielding intrinsic to bead-bound cells significantly reduces electroporation field exposure efficiency. However, high transformation frequency can be maintained in the presence of magnetic beads through the application of more intense electroporation pulses. As a proof of concept, MAGE cycles were successfully performed on a commercial EWoD cartridge using variations of the optimal magnetic bead-based preparation procedure and pulse conditions determined by the benchtop results. Transformation frequencies up to 22% were achieved on benchtop; this frequency was matched within 1% (21%) by MAGE cycles on the microfluidic device. However, typical frequencies on the device remain lower, averaging 9% with a standard deviation of 9%. The presented results demonstrate the potential of digital microfluidics to perform complex and automated genetic engineering protocols.
机译:本文报道了使用数字微流体平台对包含大肠杆菌细胞的液滴进行多重自动基因工程(MAGE)循环的情况。生物活化的磁珠用于在电上电润湿(EWoD)平台中制备电感受态细胞时进行细胞结合,洗涤和培养基交换。使用盒上电穿孔将寡核苷酸递送到细胞中。除了优化基于磁珠的台式协议以生成和转化具有电感受力的大肠杆菌细胞外,我们还报告了该协议在全自动数字微流控平台中的实施情况。在台式机上优化了基于微珠的培养基交换和电穿孔脉冲条件,以实现转化频率,从而为微流体装置试验提供初始参数。提出了比较自由和与珠子结合的细胞的电转化的台式实验。我们的结果表明,与珠子结合的细胞固有的介电屏蔽作用会大大降低电穿孔场的暴露效率。但是,通过施加更强的电穿孔脉冲,可以在存在磁珠的情况下保持较高的转化频率。作为概念验证,使用最佳的基于磁珠的制备程序和台式结果确定的脉冲条件的变化,在商用EWoD盒上成功执行了MAGE循环。在台式机上实现了高达22%的转换频率;通过微流体装置上的MAGE循环,该频率与1%(21%)相匹配。但是,设备上的典型频率仍然较低,平均为9%,标准偏差为9%。提出的结果证明了数字微流控技术执行复杂和自动化的基因工程协议的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号