首页> 美国卫生研究院文献>Biophysical Journal >How Does Mg2+ Modulate the RNA Folding Mechanism: A Case Study of the G:C W:W Trans Basepair
【2h】

How Does Mg2+ Modulate the RNA Folding Mechanism: A Case Study of the G:C W:W Trans Basepair

机译:Mg2 +如何调节RNA折叠机制:以G:C W:W反碱基对为例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Reverse Watson-Crick G:C basepairs (G:C W:W Trans) occur frequently in different functional RNAs. This is one of the few basepairs whose gas-phase-optimized isolated geometry is inconsistent with the corresponding experimental geometry. Several earlier studies indicate that through post-transcriptional modification, direct protonation, or coordination with Mg2+, accumulation of positive charge near N7 of guanine can stabilize the experimental geometry. Interestingly, recent studies reveal significant variation in the position of putatively bound Mg2+. This, in conjunction with recently raised doubts regarding some of the Mg2+ assignments near the imino nitrogen of guanine, is suggestive of the existence of multiple Mg2+ binding modes for this basepair. Our detailed investigation of Mg2+-bound G:C W:W Trans pairs occurring in high-resolution RNA crystal structures shows that they are found in 14 different contexts, eight of which display Mg2+ binding at the Hoogsteen edge of guanine. Further examination of occurrences in these eight contexts led to the characterization of three different Mg2+ binding modes: 1) direct binding via N7 coordination, 2) direct binding via O6 coordination, and 3) binding via hydrogen-bonding interaction with the first-shell water molecules. In the crystal structures, the latter two modes are associated with a buckled and propeller-twisted geometry of the basepair. Interestingly, respective optimized geometries of these different Mg2+ binding modes (optimized using six different DFT functionals) are consistent with their corresponding experimental geometries. Subsequent interaction energy calculations at the MP2 level, and decomposition of its components, suggest that for G:C W:W Trans , Mg2+ binding can fine tune the basepair geometries without compromising with their stability. Our results, therefore, underline the importance of the mode of binding of Mg2+ ions in shaping RNA structure, folding and function.
机译:沃森-克里克反向G:C碱基对(G:C W:W Trans)经常出现在不同的功能性RNA中。这是其气相优化的孤立几何与相应的实验几何不一致的少数碱基对之一。早期的一些研究表明,通过转录后修饰,直接质子化或与Mg 2 + 配位,鸟嘌呤N7附近正电荷的积累可以稳定实验的几何形状。有趣的是,最近的研究表明,假定结合的Mg 2 + 的位置存在很大差异。结合最近提出的关于鸟嘌呤亚氨基氮附近的一些Mg 2 + 赋值的疑问,表明存在多种Mg 2 + 结合模式这个碱基对。我们对高分辨率RNA晶体结构中发生的Mg 2 + 结合的G:CW:W Trans对的详细研究表明,它们在14种不同的环境中发现,其中有8种显示Mg 2 + 结合在鸟嘌呤的Hoogsteen边缘。在这八种情况下,对发生的进一步检查导致表征了三种不同的Mg 2 + 结合方式:1)通过N7配位直接结合; 2)通过O6配位直接结合; 3)通过氢结合与第一壳水分子的键合相互作用。在晶体结构中,后两种模式与碱基对的弯曲和螺旋扭曲结构有关。有趣的是,这些不同的Mg 2 + 结合模式的各自优化的几何形状(使用六种不同的DFT功能进行了优化)与它们相应的实验几何形状一致。随后在MP2级别进行的相互作用能计算以及其成分的分解表明,对于G:C W:W Trans,Mg 2 + 结合可以微调碱基对的几何形状,而不会影响其稳定性。因此,我们的结果强调了Mg 2 + 离子的结合方式在塑造RNA结构,折叠和功能中的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号