首页> 美国卫生研究院文献>Biophysical Journal >A 3D Monte Carlo Analysis of the Role of Dyadic Space Geometry in Spark Generation
【2h】

A 3D Monte Carlo Analysis of the Role of Dyadic Space Geometry in Spark Generation

机译:3D蒙特卡罗分析在火花产生中二元空间几何的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In multiple biological systems, vital intracellular signaling processes occur locally in minute periplasmic subspaces often referred to as signaling microdomains. The number of signaling molecules in these microdomains is small enough to render the notion of continuous concentration changes invalid, such that signaling events are better described using stochastic rather than deterministic methods. Of particular interest is the dyadic cleft in the cardiac myocyte, where short-lived, local increases in intracellular Ca2+ known as Ca2+ sparks regulate excitation-contraction coupling. The geometry of dyadic spaces can alter in disease and development and display significant interspecies variability. We created and studied a 3D Monte Carlo model of the dyadic cleft, specifying the spatial localization of L-type Ca2+ channels and ryanodine receptors. Our analysis revealed how reaction specificity and efficiency are regulated by microdomain geometry as well as the physical separation of signaling molecules into functional complexes. The spark amplitude and rise time were found to be highly dependent on the concentration of activated channels per dyadic cleft and on the intermembrane separation, but not very sensitive to other cleft dimensions. The role of L-type Ca2+ channel and ryanodine receptor phosphorylation was also examined. We anticipate that this modeling approach may be applied to other systems (e.g., neuronal growth cones and chemotactic cells) to create a general description of stochastic events in Ca2+ signaling.
机译:在多种生物系统中,重要的细胞内信号传导过程局部发生在微小的周质子空间中,通常被称为信号微域。这些微区中的信号分子的数量足够小,以致于连续浓度变化的概念无效,因此,使用随机方法而非确定性方法可以更好地描述信号事件。特别令人感兴趣的是心肌细胞中的二叉形裂口,其中细胞内Ca 2 + 的短暂,局部增加被称为Ca 2 + 火花调节兴奋收缩耦合。二进位空间的几何形状可能会在疾病和发展中发生变化,并显示出明显的种间变异性。我们创建并研究了二叉裂的3D蒙特卡洛模型,指定了L型Ca 2 + 通道和ryanodine受体的空间定位。我们的分析揭示了反应特异性和效率是如何通过微区几何结构以及将信号分子物理分离为功能复合物来调节的。发现火花振幅和上升时间高度取决于每个二进位裂隙的激活通道浓度和膜间分离,但对其他裂隙尺寸不是很敏感。还研究了L型Ca 2 + 通道和ryanodine受体磷酸化的作用。我们预计该建模方法可能会应用于其他系统(例如神经元生长锥和趋化细胞),以创建Ca 2 + 信号中随机事件的一般描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号