首页> 美国卫生研究院文献>Biophysical Journal >Isoform-specific lidocaine block of sodium channels explained by differences in gating.
【2h】

Isoform-specific lidocaine block of sodium channels explained by differences in gating.

机译:钠通道的亚型特异性利多卡因阻滞由门控差异解释。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When depolarized from typical resting membrane potentials (V(rest) approximately -90 mV), cardiac sodium (Na) currents are more sensitive to local anesthetics than brain or skeletal muscle Na currents. When expressed in Xenopus oocytes, lidocaine block of hH1 (human cardiac) Na current greatly exceeded that of mu1 (rat skeletal muscle) at membrane potentials near V(rest), whereas hyperpolarization to -140 mV equalized block of the two isoforms. Because the isoform-specific tonic block roughly parallels the drug-free voltage dependence of channel availability, isoform differences in the voltage dependence of fast inactivation could underlie the differences in block. However, after a brief (50 ms) depolarizing pulse, recovery from lidocaine block is similar for the two isoforms despite marked kinetic differences in drug-free recovery, suggesting that differences in fast inactivation cannot entirely explain the isoform difference in lidocaine action. Given the strong coupling between fast inactivation and other gating processes linked to depolarization (activation, slow inactivation), we considered the possibility that isoform differences in lidocaine block are explained by differences in these other gating processes. In whole-cell recordings from HEK-293 cells, the voltage dependence of hH1 current activation was approximately 20 mV more negative than that of mu1. Because activation and closed-state inactivation are positively coupled, these differences in activation were sufficient to shift hH1 availability to more negative membrane potentials. A mutant channel with enhanced closed-state inactivation gating (mu1-R1441C) exhibited increased lidocaine sensitivity, emphasizing the importance of closed-state inactivation in lidocaine action. Moreover, when the depolarization was prolonged to 1 s, recovery from a "slow" inactivated state with intermediate kinetics (I(M)) was fourfold longer in hH1 than in mu1, and recovery from lidocaine block in hH1 was similarly delayed relative to mu1. We propose that gating processes coupled to fast inactivation (activation and slow inactivation) are the key determinants of isoform-specific local anesthetic action.
机译:当从典型的静息膜电位(约-90 mV的V(rest))去极化时,心脏钠(Na)电流对局麻药的敏感性比脑或骨骼肌Na电流高。当在非洲爪蟾卵母细胞中表达时,hH1(人类心脏)Na电流的利多卡因阻滞在膜电位(V(静止)附近)大大超过mu1(大鼠骨骼肌)的阻滞,而超极化至-140 mV则使这两种同工型的阻滞相等。由于同工型特异性补品阻滞大致平行于无毒药物对通道可用性的电压依赖性,因此快速灭活的电压依赖性的同工型差异可能是阻滞差异的基础。然而,经过短暂的去极化脉冲(50毫秒)后,尽管两种药物的无毒恢复之间存在明显的动力学差异,但从两种药物的利多卡因阻滞中恢复的情况相似,这表明快速灭活的差异无法完全解释利多卡因作用的差异。鉴于快速灭活和与去极化相关的其他选通过程(激活,慢速灭活)之间存在强耦合,我们考虑了利多卡因阻滞同工型差异可能由其他选通过程中的差异所解释的可能性。在来自HEK-293细胞的全细胞记录中,hH1电流激活的电压依赖性比mu1的负电压依赖性大约20 mV。因为激活和关闭状态的失活是正向耦合的,所以激活中的这些差异足以将hH1的可用性转移到更多的负膜电位上。具有增强的闭环失活门控(mu1-R1441C)的突变体通道表现出增加的利多卡因敏感性,强调了闭环失活在利多卡因作用中的重要性。此外,当去极化时间延长至1 s时,在hH1中从具有中等动力学(I(M))的“慢”灭活状态恢复的时间比mu1长四倍,并且从hH1中的利多卡因阻滞恢复相对于mu1同样被延迟。我们提出,与快速失活(激活和缓慢失活)耦合的门控过程是异构体特异性局麻药作用的关键决定因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号