首页> 美国卫生研究院文献>The Journal of Neuroscience >Voltage-dependent ionic conductances of type I spiral ganglion cells from the guinea pig inner ear
【2h】

Voltage-dependent ionic conductances of type I spiral ganglion cells from the guinea pig inner ear

机译:豚鼠内耳的I型螺旋神经节细胞的电压依赖性离子电导

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Type I spiral ganglion cells provide the afferent innervation to the inner hair cells of the mammalian organ of Corti and project centrally to the cochlear nucleus. While single-unit studies conducted over the past several decades have provided a wealth of information concerning the response characteristics of these neurons and, to some extent, their receptor targets, little is known about the neuron's intrinsic electrical properties. These properties undeniably will contribute to the firing patterns induced by acoustic stimuli. Type I spiral ganglion cell somata from the guinea pig inner ear were acutely isolated and the voltage-dependent conductances were analyzed with the whole-cell voltage clamp. Under conditions that mimic the normal intra- and extracellular ionic environments, type I spiral ganglion cells demonstrate fast inward TTX-sensitive Na currents (whose current density varied markedly among cells) and somewhat more slowly developing outward K currents. Resting potentials averaged -67.3 mV. Under current clamp, no spontaneous spike activity was noted, but short current injections produced graded action potentials with after hyperpolarizations lasting several milliseconds. The nondecaying outward K current activated at potentials near rest and was characterized by a pronounced rectification. The kinetics of the Na and K currents were rapid. Maximum peak inward Na currents occurred within 400 microseconds, between a voltage range of -10 and 0 mV, and inactivated within 4 msec. Recovery from inactivation was also rapid. At a holding potential of -80 mV, the time constant for recovery from an inactivating voltage step to -10 mV was 2.16 msec. Above -50 mV outward K currents reach half-maximal amplitude within 1.5 msec. In addition to these currents, a slow noninactivating TTX-sensitive inward current was observed that was blockable with Cd2+ or Gd3+. Problems encountered with blocking the tremendous outward K current hampered the characterization of this inward current. Similarities between the kinetics of ganglion cell currents and some of the rapid temporal characteristics of eighth nerve single-unit activity confirm the notion that intrinsic membrane properties help shape auditory neuron responses to sound.
机译:I型螺旋神经节细胞向Corti哺乳动物器官的内部毛细胞提供传入神经支配,并向中心突出到耳蜗核。尽管在过去的几十年中进行的单单元研究提供了大量有关这些神经元的响应特性的信息,并且在一定程度上还涉及它们的受体靶标,但对神经元的内在电特性知之甚少。不可否认,这些特性将有助于声刺激引起的发射模式。急性分离出豚鼠内耳的I型螺旋神经节细胞体细胞,并用全细胞电压钳分析电压依赖性电导。在模拟正常的细胞内和细胞外离子环境的条件下,I型螺旋神经节细胞表现出快速向内的TTX敏感的Na电流(其电流密度在细胞之间显着变化)和稍微慢一些的向外发展的K电流。静息电势平均为-67.3 mV。在电流钳制下,没有注意到自发的尖峰活动,但是短电流注入在超极化后持续几毫秒后产生了分级的动作电位。非衰减的向外K电流在接近静止的电位处激活,并具有明显的整流特性。 Na和K电流的动力学很快。在-10到0 mV的电压范围内,最大的内向Na峰值电流发生在400微秒内,并在4毫秒内失活。从灭活中恢复也很快。在-80 mV的保持电势下,从失活电压阶跃恢复到-10 mV的时间常数为2.16毫秒。高于-50 mV时,向外的K电流在1.5毫秒内达到最大振幅的一半。除了这些电流外,还观察到了缓慢的非灭活TTX敏感的内向电流,该电流可以被Cd2 +或Gd3 +阻断。阻止巨大的向外K电流遇到的问题阻碍了这种向内电流的特性。神经节细胞电流的动力学和第八神经单单位活动的一些快速时间特征之间的相似性证实了以下观点,即固有的膜特性有助于塑造听觉神经元对声音的反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号