BackgroundNext-generation sequencing has been used by investigators to address a diverse range of biological problems through, for example, polymorphism and mutation discovery and microRNA profiling. However, compared to conventional sequencing, the error rates for next-generation sequencing are often higher, which impacts the downstream genomic analysis. Recently, Wang et al. (BMC Bioinformatics 13:185, 2012) proposed a shadow regression approach to estimate the error rates for next-generation sequencing data based on the assumption of a linear relationship between the number of reads sequenced and the number of reads containing errors (denoted as shadows). However, this linear read-shadow relationship may not be appropriate for all types of sequence data. Therefore, it is necessary to estimate the error rates in a more reliable way without assuming linearity. We proposed an empirical error rate estimation approach that employs cubic and robust smoothing splines to model the relationship between the number of reads sequenced and the number of shadows.
展开▼