首页> 美国卫生研究院文献>BMC Bioinformatics >A formal concept analysis approach to consensus clustering of multi-experiment expression data
【2h】

A formal concept analysis approach to consensus clustering of multi-experiment expression data

机译:一种用于多实验表达数据的共识聚类的形式化概念分析方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundPresently, with the increasing number and complexity of available gene expression datasets, the combination of data from multiple microarray studies addressing a similar biological question is gaining importance. The analysis and integration of multiple datasets are expected to yield more reliable and robust results since they are based on a larger number of samples and the effects of the individual study-specific biases are diminished. This is supported by recent studies suggesting that important biological signals are often preserved or enhanced by multiple experiments. An approach to combining data from different experiments is the aggregation of their clusterings into a consensus or representative clustering solution which increases the confidence in the common features of all the datasets and reveals the important differences among them.
机译:背景技术目前,随着可用基因表达数据集的数量和复杂性的提高,来自多个微阵列研究的数据组合解决了类似的生物学问题,这一点正变得越来越重要。多个数据集的分析和集成有望产生更可靠,更可靠的结果,因为它们基于大量样本,并且各个研究特定偏见的影响也有所减少。最近的研究支持了这一点,表明重要的生物学信号通常可以通过多次实验来保留或增强。组合来自不同实验的数据的一种方法是将它们的聚类聚合为一个共识性或代表性的聚类解决方案,这可以提高对所有数据集的共同特征的置信度,并揭示它们之间的重要差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号