首页> 美国卫生研究院文献>BMC Bioinformatics >Analysis of high dimensional data using pre-defined set and subset information with applications to genomic data
【2h】

Analysis of high dimensional data using pre-defined set and subset information with applications to genomic data

机译:使用预定义的集合和子集信息分析高维数据并将其应用于基因组数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundBased on available biological information, genomic data can often be partitioned into pre-defined sets (e.g. pathways) and subsets within sets. Biologists are often interested in determining whether some pre-defined sets of variables (e.g. genes) are differentially expressed under varying experimental conditions. Several procedures are available in the literature for making such determinations, however, they do not take into account information regarding the subsets within each set. Secondly, variables (e.g. genes) belonging to a set or a subset are potentially correlated, yet such information is often ignored and univariate methods are used. This may result in loss of power and/or inflated false positive rate.
机译:背景技术基于可用的生物学信息,基因组数据通常可以划分为预定义的集合(例如途径)和集合内的子集。生物学家通常对确定在不同的实验条件下是否能差异表达某些预定义的变量集(例如基因)感兴趣。文献中提供了几种程序来进行此类确定,但是,它们没有考虑有关每个集合中子集的信息。其次,属于一个集合或一个子集的变量(例如基因)可能具有相关性,但是这种信息经常被忽略,并且使用单变量方法。这可能会导致断电和/或虚假阳性率升高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号