首页> 美国卫生研究院文献>BMC Proceedings >Seeking gene relationships in gene expression data using support vector machine regression
【2h】

Seeking gene relationships in gene expression data using support vector machine regression

机译:使用支持向量机回归在基因表达数据中寻找基因关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Several genetic determinants responsible for individual variation in gene expression have been located using linkage and association analyses. These analyses have revealed regulatory relationships between genes. The heritability of expression variation as a quantitative phenotype reflects its underlying genetic architecture. Using support vector machine regression (SVMR) and gene ontological information, we proposed an approach to identify gene relationships in expression data provided by Genetic Analysis Workshop 15 that would facilitate subsequent genetic analyses. A group of related genes were selected for a shared biological theme, and SVMR was trained to form a regression model using the training gene expressions. The model was subsequently used to search for and capture similarly related genes. SVMR shows promising capability in modeling and seeking gene relationships through expression data.
机译:使用连锁和关联分析已经找到了几个负责基因表达个体变异的遗传决定因素。这些分析揭示了基因之间的调节关系。作为定量表型的表达变异的遗传力反映了其潜在的遗传结构。使用支持向量机回归(SVMR)和基因本体论信息,我们提出了一种方法来鉴定由遗传分析研讨会15提供的表达数据中的基因关系,这将有助于后续的遗传分析。选择一组相关基因以共享生物学主题,并使用训练基因表达对SVMR进行训练以形成回归模型。随后将该模型用于搜索和捕获相似相关的基因。 SVMR在通过表达数据建模和寻找基因关系方面显示出有希望的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号