首页> 美国卫生研究院文献>Journal of the Royal Society Interface >Range bagging: a new method for ecological niche modelling from presence-only data
【2h】

Range bagging: a new method for ecological niche modelling from presence-only data

机译:范围套袋:仅存在数据即可进行生态位建模的新方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ecological niche is the set of environments in which a population of a species can persist without introduction of individuals from other locations. A good mathematical or computational representation of the niche is a prerequisite to addressing many questions in ecology, biogeography, evolutionary biology and conservation. A particularly challenging question for ecological niche modelling is the problem of presence-only modelling. That is, can an ecological niche be identified from records drawn only from the set of niche environments without records from non-niche environments for comparison? Here, I introduce a new method for ecological niche modelling from presence-only data called range bagging. Range bagging draws on the concept of a species' environmental range, but was inspired by the empirical performance of ensemble learning algorithms in other areas of ecological research. This paper extends the concept of environmental range to multiple dimensions and shows that range bagging is computationally feasible even when the number of environmental dimensions is large. The target of the range bagging base learner is an environmental tolerance of the species in a projection of its niche and is therefore an ecologically interpretable property of a species' biological requirements. The computational complexity of range bagging is linear in the number of examples, which compares favourably with the main alternative, Qhull. In conclusion, range bagging appears to be a reasonable choice for niche modelling in applications in which a presence-only method is desired and may provide a solution to problems in other disciplines where one-class classification is required, such as outlier detection and concept learning.
机译:生态位是一组环境,在该环境中物种种群可以持续存在而无需从其他地方引入个体。生态位的良好数学或计算表示是解决生态学,生物地理学,进化生物学和保护学中许多问题的前提。生态位建模的一个特别具有挑战性的问题是仅存在建模的问题。也就是说,是否可以仅从一组利基环境中获得的记录中识别出生态位,而没有来自非利基环境中的记录来进行比较?在这里,我介绍了一种新的生态位建模方法,它由仅存在数据组成,称为范围装袋。范围套用物种的环境范围概念,但受到集成学习算法在生态研究其他领域的经验性能的启发。本文将环境范围的概念扩展到多个维度,并表明即使环境维度的数量很大,范围套袋在计算上也是可行的。套袋基础学习者的目标是根据其生态位预测对该物种的环境耐受性,因此是该物种生物学要求的生态可解释的特性。在示例中,范围套袋的计算复杂度是线性的,与主要选择Qhull相比,它具有优势。总而言之,对于仅需要在线状态方法的应用,范围袋装似乎是小生境建模的合理选择,并且可以为需要一类分类的其他学科(例如异常检测和概念学习)中的问题提供解决方案。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号