Cell apoptosis is a biochemical and molecular pathway essential for maintaining cellular homeostasis. It is an integrated process involving in a series of signal transduction cascades. Moreover, the apoptotic pathways may be initiated inside various subcellular organelles. Increasing evidence indicates that hydrogen peroxide (H2O2) is closely related to cell apoptosis, particularly in the mitochondria. However, during the apoptotic process, the synergetic variation of H2O2 levels in different compartments is seldom explored, particularly in two important organelles: mitochondria and endoplasmic reticulum (ER). To solve this problem, we developed two new organelle-specific fluorescent probes termed >MI-H2O2 and >ER-H2O2 that can detect H2O2 in mitochondria and ER, respectively or simultaneously. Experimental results demonstrated that >MI-H2O2 and >ER-H2O2 display distinguishable excitation and emission spectra, as well as excellent organelle targeting capabilities. Therefore, we used >MI-H2O2 and >ER-H2O2 to successfully image exogenous or endogenous hydrogen peroxide in the mitochondria and ER. Interestingly, during diverse apoptotic stimuli, dual-color fluorescence imaging results revealed that the changes of H2O2 levels in mitochondria and ER are different. The H2O2 levels are enhanced in both the mitochondria and ER during the l-buthionine sulfoximine (BSO)-treated cell apoptosis process. During mitochondria-oriented apoptosis induced by carbonyl cyanide m-chlorophenylhydrazone (CCCP) or rotenone, H2O2 levels prominently and continuously increase in the mitochondria, whereas the ER H2O2 levels were found to rise subsequently after a delay. Moreover, during ER-oriented apoptosis induced by tunicamycin, ER is the major site for overproduction of H2O2, and delayed elevation of the H2O2 levels was found in the mitochondria. Altogether, this dual-probe and multicolor imaging approach may offer a proven methodology for studying molecular communication events on H2O2-related apoptosis and also other physiological and pathological processes within different subcellular organelles.
展开▼
机译:细胞凋亡是维持细胞稳态所需的生化和分子途径。这是一个集成过程,涉及一系列信号转导级联。此外,凋亡途径可以在各种亚细胞细胞器内部启动。越来越多的证据表明,过氧化氢(H2O2)与细胞凋亡密切相关,尤其是在线粒体中。然而,在凋亡过程中,很少探索不同隔室中H2O2水平的协同变化,尤其是在两个重要的细胞器:线粒体和内质网(ER)中。为解决此问题,我们开发了两种新的细胞器特异性荧光探针,分别称为> MI-H2O2 strong>和> ER-H2O2 strong>,它们可以分别或同时检测线粒体和ER中的H2O2。实验结果表明,> MI-H2O2 strong>和> ER-H2O2 strong>显示出可区分的激发光谱和发射光谱,以及出色的细胞器靶向能力。因此,我们使用> MI-H2O2 strong>和> ER-H 2 sub> O 2 sub> strong>成功地成像了外源或内源过氧化氢在线粒体和内质网。有趣的是,在不同的凋亡刺激过程中,双色荧光成像结果表明线粒体和内质网中H 2 sub> O 2 sub>水平的变化是不同的。在L-丁硫氨酸亚砜亚胺(BSO)处理的细胞凋亡过程中,线粒体和ER中的H 2 sub> O 2 sub>水平均升高。在羰基氰化物间氯苯hydr(CCCP)或鱼藤酮诱导的线粒体定向凋亡过程中,线粒体中H 2 sub> O 2 sub>水平显着并持续增加,而ER H <发现sub> 2 sub> O 2 sub>的水平在延迟后随后上升。此外,在衣霉素诱导的ER导向的细胞凋亡过程中,ER是H 2 sub> O 2 sub>过量生产和H 2 sub>升高延迟的主要部位。线粒体中存在sub> O 2 sub>水平。总之,这种双探针和多色成像方法可以为研究H 2 sub> O 2 sub>相关的细胞凋亡以及其他生理和病理过程中的分子通讯事件提供一种行之有效的方法。不同的亚细胞器。
展开▼