首页> 美国卫生研究院文献>Computational Intelligence and Neuroscience >Sensor Fault Detection and Diagnosis Method for AHU Using 1-D CNN and Clustering Analysis
【2h】

Sensor Fault Detection and Diagnosis Method for AHU Using 1-D CNN and Clustering Analysis

机译:一维CNN和聚类分析的AHU传感器故障检测与诊断方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a fault detection and diagnosis (FDD) method, which uses one-dimensional convolutional neural network (1-D CNN) and WaveCluster clustering analysis to detect and diagnose sensor faults in the supply air temperature (Tsup) control loop of the air handling unit. In this approach, 1-D CNN is employed to extract man-guided features from raw data, and the extracted features are analyzed by WaveCluster clustering. The suspicious sensor faults are indicated and categorized by denoting clusters. Moreover, the Tc acquittal procedure is introduced to further improve the accuracy of FDD. In validation, false alarm ratio and missing diagnosis ratio are mainly used to demonstrate the efficiency of the proposed FDD method. Results show that the abrupt sensor faults in Tsup control loop can be efficiently detected and diagnosed, and the proposed method is equipped with good robustness within the noise range of 6 dBm∼13 dBm.
机译:本文提出了一种故障检测与诊断(FDD)方法,该方法使用一维卷积神经网络(1-D CNN)和WaveCluster聚类分析来检测和诊断空气供应空气温度(Tsup)控制回路中的传感器故障。处理单元。在这种方法中,采用一维CNN从原始数据中提取人为引导的特征,然后通过WaveCluster聚类分析提取的特征。通过表示聚类来指示可疑传感器故障并进行分类。此外,引入了Tc无罪释放程序,以进一步提高FDD的准确性。在验证中,误报率和漏诊率主要用来证明所提出的FDD方法的有效性。结果表明,可以有效地检测和诊断出Tsup控制回路中的突然传感器故障,该方法在6 dBm〜13 dBm的噪声范围内具有良好的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号