首页> 美国卫生研究院文献>Computational Intelligence and Neuroscience >Using Black Hole Algorithm to Improve EEG-Based Emotion Recognition
【2h】

Using Black Hole Algorithm to Improve EEG-Based Emotion Recognition

机译:使用黑洞算法改进基于EEG的情绪识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Emotions are a critical aspect of human behavior. One widely used technique for research in emotion measurement is based on the use of EEG signals. In general terms, the first step of signal processing is the elimination of noise, which can be done in manual or automatic terms. The next step is determining the feature vector using, for example, entropy calculation and its variations to generate a classification model. It is possible to use this approach to classify theoretical models such as the Circumplex model. This model proposes that emotions are distributed in a two-dimensional circular space. However, methods to determine the feature vector are highly susceptible to noise that may exist in the signal. In this article, a new method to adjust the classifier is proposed using metaheuristics based on the black hole algorithm. The method is aimed at obtaining results similar to those obtained with manual noise elimination methods. In order to evaluate the proposed method, the MAHNOB HCI Tagging Database was used. Results show that using the black hole algorithm to optimize the feature vector of the Support Vector Machine we obtained an accuracy of 92.56% over 30 executions.
机译:情绪是人类行为的重要方面。一种用于情绪测量研究的广泛使用的技术是基于EEG信号的使用。一般而言,信号处理的第一步是消除噪声,可以手动或自动进行。下一步是使用例如熵计算及其变化来确定特征向量,以生成分类模型。可以使用这种方法对诸如Circumplex模型之类的理论模型进行分类。该模型提出情感在二维圆形空间中分布。然而,确定特征向量的方法高度易受信号中可能存在的噪声的影响。本文提出了一种基于黑洞算法的元启发式调整分类器的新方法。该方法旨在获得与手动消除噪声方法相似的结果。为了评估所提出的方法,使用了MAHNOB HCI标签数据库。结果表明,使用黑洞算法优化支持向量机的特征向量,我们在30次执行中获得了92.56%的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号