首页> 外文期刊>Expert Systems with Application >Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors
【24h】

Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors

机译:使用移动传感器的基于EEG的情绪识别特征选择的进化计算算法

获取原文
获取原文并翻译 | 示例

摘要

There is currently no standard or widely accepted subset of features to effectively classify different emotions based on electroencephalogram (EEG) signals. While combining all possible EEG features may improve the classification performance, it can lead to high dimensionality and worse performance due to redundancy and inefficiency. To solve the high-dimensionality problem, this paper proposes a new framework to automatically search for the optimal subset of EEG features using evolutionary computation (EC) algorithms. The proposed framework has been extensively evaluated using two public datasets (MAHNOB, DEAP) and a new dataset acquired with a mobile EEG sensor. The results confirm that EC algorithms can effectively support feature selection to identify the best EEG features and the best channels to maximize performance over a four-quadrant emotion classification problem. These findings are significant for informing future development of EEG-based emotion classification because low-cost mobile EEG sensors with fewer electrodes are becoming popular for many new applications. Crown Copyright (C) 2017 Published by Elsevier Ltd. All rights reserved.
机译:当前没有标准或广泛接受的特征子集,可以根据脑电图(EEG)信号有效地对不同的情绪进行分类。虽然将所有可能的EEG功能组合在一起可以提高分类性能,但由于冗余和效率低下,它可能导致高维数和较差的性能。为了解决高维问题,本文提出了一种新的框架,可以使用进化计算(EC)算法自动搜索脑电特征的最佳子集。使用两个公共数据集(MAHNOB,DEAP)和使用移动式EEG传感器获取的新数据集对提议的框架进行了广泛的评估。结果证实,EC算法可以有效地支持特征选择,以识别最佳的EEG特征和最佳的渠道,从而在四象限情感分类问题上实现最佳性能。这些发现对于通知基于EEG的情感分类的未来发展具有重要意义,因为具有更少电极的低成本移动EEG传感器已在许多新应用中流行。 Crown版权所有(C)2017,由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号