首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Simultaneous Synthesis of Single-walled Carbon Nanotubes and Graphene in a Magnetically-enhanced Arc Plasma
【2h】

Simultaneous Synthesis of Single-walled Carbon Nanotubes and Graphene in a Magnetically-enhanced Arc Plasma

机译:磁增强电弧等离子体中单壁碳纳米管和石墨烯的同时合成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene attract a deluge of interest of scholars nowadays due to their very promising application for molecular sensors, field effect transistor and super thin and flexible electronic devices1-4. Anodic arc discharge supported by the erosion of the anode material is one of the most practical and efficient methods, which can provide specific non-equilibrium processes and a high influx of carbon material to the developing structures at relatively higher temperature, and consequently the as-synthesized products have few structural defects and better crystallinity.To further improve the controllability and flexibility of the synthesis of carbon nanostructures in arc discharge, magnetic fields can be applied during the synthesis process according to the strong magnetic responses of arc plasmas. It was demonstrated that the magnetically-enhanced arc discharge can increase the average length of SWCNT 5, narrow the diameter distribution of metallic catalyst particles and carbon nanotubes 6, and change the ratio of metallic and semiconducting carbon nanotubes 7, as well as lead to graphene synthesis 8. Furthermore, it is worthwhile to remark that when we introduce a non-uniform magnetic field with the component normal to the current in arc, the Lorentz force along the J×B direction can generate the plasmas jet and make effective delivery of carbon ion particles and heat flux to samples. As a result, large-scale graphene flakes and high-purity single-walled carbon nanotubes were simultaneously generated by such new magnetically-enhanced anodic arc method. Arc imaging, scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy were employed to analyze the characterization of carbon nanostructures. These findings indicate a wide spectrum of opportunities to manipulate with the properties of nanostructures produced in plasmas by means of controlling the arc conditions.
机译:单壁碳纳米管(SWCNT)和石墨烯等碳纳米结构因其在分子传感器,场效应晶体管以及超薄和柔性电子器件 1-4 中的应用前景十分广阔,如今引起了学者的广泛兴趣。 sup>。由阳极材料的腐蚀所支持的阳极电弧放电是最实用,最有效的方法之一,可以在相对较高的温度下提供特定的非平衡过程,并使大量的碳材料涌入正在发展的结构中,因此-合成后的产品结构缺陷少,结晶度好。为进一步提高电弧放电中碳纳米结构合成的可控性和灵活性,可以根据电弧等离子体的强磁响应在合成过程中施加磁场。结果表明,磁增强电弧放电可以增加SWCNT 5 的平均长度,缩小金属催化剂颗粒和碳纳米管 6 的直径分布,并改变比例金属和半导体碳纳米管 7 的形成,以及导致石墨烯合成的 8 。此外,值得一提的是,当我们引入一个不均匀的,垂直于电弧电流的磁场时,沿J×B方向的洛伦兹力会产生等离子体射流,并有效地传递碳离子粒子和样品的热通量。结果,通过这种新的磁增强阳极电弧法同时产生了大规模的石墨烯薄片和高纯度的单壁碳纳米管。电弧成像,扫描电子显微镜(SEM),透射电子显微镜(TEM)和拉曼光谱被用来分析碳纳米结构的表征。这些发现表明,通过控制电弧条件,可以利用等离子体中产生的纳米结构的性质来操纵各种机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号