首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Estimating Vehicle Movement Direction from Smartphone Accelerometers Using Deep Neural Networks
【2h】

Estimating Vehicle Movement Direction from Smartphone Accelerometers Using Deep Neural Networks

机译:使用深度神经网络从智能手机加速度计估算车辆运动方向

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Characterization of driving maneuvers or driving styles through motion sensors has become a field of great interest. Before now, this characterization used to be carried out with signals coming from extra equipment installed inside the vehicle, such as On-Board Diagnostic (OBD) devices or sensors in pedals. Nowadays, with the evolution and scope of smartphones, these have become the devices for recording mobile signals in many driving characterization applications. Normally multiple available sensors are used, such as accelerometers, gyroscopes, magnetometers or the Global Positioning System (GPS). However, using sensors such as GPS increase significantly battery consumption and, additionally, many current phones do not include gyroscopes. Therefore, we propose the characterization of driving style through only the use of smartphone accelerometers. We propose a deep neural network (DNN) architecture that combines convolutional and recurrent networks to estimate the vehicle movement direction (VMD), which is the forward movement directional vector captured in a phone’s coordinates. Once VMD is obtained, multiple applications such as characterizing driving styles or detecting dangerous events can be developed. In the development of the proposed DNN architecture, two different methods are compared. The first one is based on the detection and classification of significant acceleration driving forces, while the second one relies on longitudinal and transversal signals derived from the raw accelerometers. The final success rate of VMD estimation for the best method is of 90.07%.
机译:通过运动传感器表征驾驶动作或驾驶方式已成为人们非常感兴趣的领域。在此之前,这种表征通常是通过来自车辆内部安装的额外设备的信号来进行的,例如车载诊断(OBD)设备或踏板传感器。如今,随着智能手机的发展和范围的扩大,这些已成为在许多驾驶特性分析应用中记录移动信号的设备。通常使用多个可用的传感器,例如加速度计,陀螺仪,磁力计或全球定位系统(GPS)。然而,使用诸如GPS之类的传感器会大大增加电池消耗,此外,许多当前的电话不包括陀螺仪。因此,我们建议仅通过使用智能手机加速度计来表征驾驶风格。我们提出了一种深度神经网络(DNN)架构,该架构结合了卷积网络和递归网络来估计车辆运动方向(VMD),该运动方向是在手机坐标中捕获的向前运动方向向量。一旦获得了VMD,便可以开发多种应用程序,例如表征驾驶风格或检测危险事件。在提出的DNN架构的开发中,比较了两种不同的方法。第一个基于显着的加速度驱动力的检测和分类,而第二个则基于从原始加速度计得出的纵向和横向信号。最佳方法的VMD估计最终成功率为90.07%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号