首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >The Effect of Personalization on Smartphone-Based Fall Detectors
【2h】

The Effect of Personalization on Smartphone-Based Fall Detectors

机译:个性化对基于智能手机的跌倒检测器的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The risk of falling is high among different groups of people, such as older people, individuals with Parkinson's disease or patients in neuro-rehabilitation units. Developing robust fall detectors is important for acting promptly in case of a fall. Therefore, in this study we propose to personalize smartphone-based detectors to boost their performance as compared to a non-personalized system. Four algorithms were investigated using a public dataset: three novelty detection algorithms—Nearest Neighbor (NN), Local Outlier Factor (LOF) and One-Class Support Vector Machine (OneClass-SVM)—and a traditional supervised algorithm, Support Vector Machine (SVM). The effect of personalization was studied for each subject by considering two different training conditions: data coming only from that subject or data coming from the remaining subjects. The area under the receiver operating characteristic curve (AUC) was selected as the primary figure of merit. The results show that there is a general trend towards the increase in performance by personalizing the detector, but the effect depends on the individual being considered. A personalized NN can reach the performance of a non-personalized SVM (average AUC of 0.9861 and 0.9795, respectively), which is remarkable since NN only uses activities of daily living for training.
机译:在不同人群中,例如老年人,患有帕金森氏病的人或神经康复科的患者,跌倒的风险很高。开发坚固的跌倒检测器对于在跌倒时迅速采取行动很重要。因此,在这项研究中,我们建议个性化基于智能手机的检测器,以与非个性化系统相比提高其性能。使用公开数据集研究了四种算法:三种新颖性检测算法-最近邻(NN),局部离群因子(LOF)和一类支持向量机(OneClass-SVM)-以及传统的监督算法支持向量机(SVM) )。通过考虑两种不同的训练条件来研究每个主题的个性化效果:仅来自该主题的数据或来自其余主题的数据。选择接收机工作特性曲线(AUC)下的面积作为主要品质因数。结果表明,通过个性化检测器可以提高性能,这是一个总体趋势,但是效果取决于所考虑的个体。个性化的NN可以达到非个性化的SVM的性能(分别为0.9861和0.9795的平均AUC),这很了不起,因为NN仅使用日常生活的活动进行训练。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号