首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Soft Lithographic Functionalization and Patterning Oxide-free Silicon and Germanium
【2h】

Soft Lithographic Functionalization and Patterning Oxide-free Silicon and Germanium

机译:软光刻功能化和构图无氧化物的硅和锗

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The development of hybrid electronic devices relies in large part on the integration of (bio)organic materials and inorganic semiconductors through a stable interface that permits efficient electron transport and protects underlying substrates from oxidative degradation. Group IV semiconductors can be effectively protected with highly-ordered self-assembled monolayers (SAMs) composed of simple alkyl chains that act as impervious barriers to both organic and aqueous solutions. Simple alkyl SAMs, however, are inert and not amenable to traditional patterning techniques. The motivation for immobilizing organic molecular systems on semiconductors is to impart new functionality to the surface that can provide optical, electronic, and mechanical function, as well as chemical and biological activity. Microcontact printing (μCP) is a soft-lithographic technique for patterning SAMs on myriad surfaces.1-9 Despite its simplicity and versatility, the approach has been largely limited to noble metal surfaces and has not been well developed for pattern transfer to technologically important substrates such as oxide-free silicon and germanium. Furthermore, because this technique relies on the ink diffusion to transfer pattern from the elastomer to substrate, the resolution of such traditional printing is essentially limited to near 1 μm.10-16In contrast to traditional printing, inkless μCP patterning relies on a specific reaction between a surface-immobilized substrate and a stamp-bound catalyst. Because the technique does not rely on diffusive SAM formation, it significantly expands the diversity of patternable surfaces. In addition, the inkless technique obviates the feature size limitations imposed by molecular diffusion, facilitating replication of very small (<200 nm) features.17-23 However, up till now, inkless μCP has been mainly used for patterning relatively disordered molecular systems, which do not protect underlying surfaces from degradation.Here, we report a simple, reliable high-throughput method for patterning passivated silicon and germanium with reactive organic monolayers and demonstrate selective functionalization of the patterned substrates with both small molecules and proteins. The technique utilizes a preformed NHS-reactive bilayered system on oxide-free silicon and germanium. The NHS moiety is hydrolyzed in a pattern-specific manner with a sulfonic acid-modified acrylate stamp to produce chemically distinct patterns of NHS-activated and free carboxylic acids. A significant limitation to the resolution of many μCP techniques is the use of PDMS material which lacks the mechanical rigidity necessary for high fidelity transfer. To alleviate this limitation we utilized a polyurethane acrylate polymer, a relatively rigid material that can be easily functionalized with different organic moieties. Our patterning approach completely protects both silicon and germanium from chemical oxidation, provides precise control over the shape and size of the patterned features, and gives ready access to chemically discriminated patterns that can be further functionalized with both organic and biological molecules. The approach is general and applicable to other technologically-relevant surfaces.
机译:混合电子设备的开发在很大程度上依赖于(生物)有机材料和无机半导体通过稳定界面的整合,该界面允许有效的电子传输并保护下面的基板免于氧化降解。 IV级半导体可以通过由简单的烷基链组成的高度有序的自组装单分子层(SAM)进行有效保护,这些分子对有机溶液和水溶液均具有不可渗透的屏障。但是,简单的烷基SAM是惰性的,不适合传统的构图技术。将有机分子系统固定在半导体上的动机是赋予表面新功能,该功能可以提供光学,电子和机械功能,以及化学和生物活性。微接触印刷(μCP)是一种软光刻技术,用于在无数个表面上构图SAM。 1-9 尽管其简单性和多功能性,但该方法主要限于贵金属表面,并且尚未得到很好的开发。用于将图案转移到技术上重要的基材上,例如无氧化物的硅和锗。此外,由于此技术依靠墨水扩散将图案从弹性体转移到基材,因此这种传统印刷的分辨率基本上限制在1μm附近。 10-16 与传统印刷相比,无墨水μCP图案化依赖于表面固定的基材与压模结合的催化剂之间的特定反应。因为该技术不依赖于扩散SAM的形成,所以它大大扩展了可构图表面的多样性。此外,无墨技术消除了分子扩散带来的特征尺寸限制,有利于复制非常小的(<200 nm)特征。 17-23 但是,到目前为止,无墨μCP一直被主要使用本文报道了一种简单,可靠的高通量方法,用于用反应性有机单分子层对钝化的硅和锗进行构图,并展示了两种小分子对经构图的衬底的选择性功能化和蛋白质。该技术在无氧化物的硅和锗上利用预制的NHS反应性双层系统。 NHS部分以特定于图案的方式用磺酸改性的丙烯酸酯印章水解,以产生NHS活化和游离羧酸的化学上不同的图案。对许多μCP技术的分辨率的显着限制是使用PDMS材料,该材料缺乏高保真度传递所需的机械刚度。为了减轻这种局限性,我们使用了聚氨酯丙烯酸酯聚合物,这是一种相对刚性的材料,可以很容易地用不同的有机部分官能化。我们的图案化方法完全保护了硅和锗免受化学氧化,提供了对图案化特征的形状和大小的精确控制,并提供了可通过有机分子和生物分子进一步功能化的化学识别图案。该方法是通用的,适用于其他与技术相关的表面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号