首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding
【2h】

Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding

机译:基于统计局部线性嵌入的轴承故障诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches.
机译:故障诊断本质上是一种模式识别。被测信号样本通常分布在高维信号空间中嵌入的非线性低维流形上,因此如何实现特征提取,降维和提高识别性能是至关重要的。本文提出了一种基于统计局部线性嵌入(S-LLE)算法的机械故障诊断新方法,该算法是通过利用故障类别标签信息对LLE进行的扩展。故障诊断方法首先从高维特征向量中提取固有流形特征,该高维特征向量是通过时域,频域和经验模式分解(EMD)进行特征提取的振动信号获得的,然后将复杂模式空间转换为流形学习算法S-LLE显着的低维特征空间,其性能优于其他特征约简方法,例如PCA,LDA和LLE。最后,在特征约简空间模式分类和分类器故障诊断中,可以轻松,快速地进行。滚动轴承故障信号用于验证所提出的故障诊断方法。结果表明,所提出的方法明显提高了故障模式识别的分类性能,并且优于其他传统方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号