首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Scanning probe acceleration microscopy (SPAM) in fluids: Mapping mechanical properties of surfaces at the nanoscale
【2h】

Scanning probe acceleration microscopy (SPAM) in fluids: Mapping mechanical properties of surfaces at the nanoscale

机译:流体中的扫描探针加速显微镜(SPAM):绘制纳米级表面的机械性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the major thrusts in proximal probe techniques is combination of imaging capabilities with simultaneous measurements of physical properties. In tapping mode atomic force microscopy (TMAFM), the most straightforward way to accomplish this goal is to reconstruct the time-resolved force interaction between the tip and surface. These tip–sample forces can be used to detect interactions (e.g., binding sites) and map material properties with nanoscale spatial resolution. Here, we describe a previously unreported approach, which we refer to as scanning probe acceleration microscopy (SPAM), in which the TMAFM cantilever acts as an accelerometer to extract tip–sample forces during imaging. This method utilizes the second derivative of the deflection signal to recover the tip acceleration trajectory. The challenge in such an approach is that with real, noisy data, the second derivative of the signal is strongly dominated by the noise. This problem is solved by taking advantage of the fact that most of the information about the deflection trajectory is contained in the higher harmonics, making it possible to filter the signal by “comb” filtering, i.e., by taking its Fourier transform and inverting it while selectively retaining only the intensities at integer harmonic frequencies. Such a comb filtering method works particularly well in fluid TMAFM because of the highly distorted character of the deflection signal. Numerical simulations and in situ TMAFM experiments on supported lipid bilayer patches on mica are reported to demonstrate the validity of this approach.
机译:近端探针技术的主要推动力之一是成像能力与同时测量物理特性的结合。在轻敲模式原子力显微镜(TMAFM)中,实现此目标的最直接方法是重建尖端与表面之间的时间分辨力相互作用。这些尖端采样力可用于检测相互作用(例如,结合位点)并以纳米级的空间分辨率绘制材料属性。在这里,我们描述了一种以前未曾报道过的方法,我们将其称为扫描探针加速显微镜(SPAM),其中TMAFM悬臂用作加速度计,以在成像过程中提取尖端样本力。该方法利用偏转信号的二阶导数来恢复尖端加速轨迹。这种方法的挑战在于,对于真实,嘈杂的数据,信号的二阶导数主要受噪声支配。通过利用以下事实来解决该问题:与偏转轨迹有关的大多数信息都包含在高次谐波中,这使得可以通过“梳状”滤波对信号进行滤波,即通过对其进行傅立叶变换并将其反相有选择地仅保留整数谐波频率下的强度。由于偏转信号的高度失真特性,这种梳状滤波方法在流体TMAFM中效果特别好。据报道,对云母上支持的脂质双层膜的数值模拟和原位TMAFM实验证明了这种方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号