首页> 美国卫生研究院文献>PLoS Genetics >Screening and Replication using the Same Data Set: Testing Strategies for Family-Based Studies in which All Probands Are Affected
【2h】

Screening and Replication using the Same Data Set: Testing Strategies for Family-Based Studies in which All Probands Are Affected

机译:使用相同的数据集进行筛选和复制:影响所有先证者的基于家庭的研究的测试策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For genome-wide association studies in family-based designs, we propose a powerful two-stage testing strategy that can be applied in situations in which parent-offspring trio data are available and all offspring are affected with the trait or disease under study. In the first step of the testing strategy, we construct estimators of genetic effect size in the completely ascertained sample of affected offspring and their parents that are statistically independent of the family-based association/transmission disequilibrium tests (FBATs/TDTs) that are calculated in the second step of the testing strategy. For each marker, the genetic effect is estimated (without requiring an estimate of the SNP allele frequency) and the conditional power of the corresponding FBAT/TDT is computed. Based on the power estimates, a weighted Bonferroni procedure assigns an individually adjusted significance level to each SNP. In the second stage, the SNPs are tested with the FBAT/TDT statistic at the individually adjusted significance levels. Using simulation studies for scenarios with up to 1,000,000 SNPs, varying allele frequencies and genetic effect sizes, the power of the strategy is compared with standard methodology (e.g., FBATs/TDTs with Bonferroni correction). In all considered situations, the proposed testing strategy demonstrates substantial power increases over the standard approach, even when the true genetic model is unknown and must be selected based on the conditional power estimates. The practical relevance of our methodology is illustrated by an application to a genome-wide association study for childhood asthma, in which we detect two markers meeting genome-wide significance that would not have been detected using standard methodology.
机译:对于基于家庭的设计中的全基因组关联研究,我们提出了一种有效的两阶段测试策略,该策略可用于可获得亲子后代三项数据且所有后代都受到所研究的性状或疾病影响的情况。在测试策略的第一步中,我们在受影响的后代及其父母的完全确定的样本中构造遗传效应大小的估计量,这些样本在统计学上独立于基于家庭的关联/传播不平衡测验(FBAT / TDT),该测验在测试策略的第二步。对于每个标记,估计遗传效应(无需估计SNP等位基因频率),并计算相应FBAT / TDT的条件功效。基于功率估计,加权Bonferroni程序将单独调整的显着性水平分配给每个SNP。在第二阶段,使用FBAT / TDT统计数据在单独调整的显着性水平下测试SNP。通过对多达1,000,000个SNP,等位基因频率和遗传效应大小不同的场景进行模拟研究,将该策略的功能与标准方法(例如采用Bonferroni校正的FBAT / TDT)进行了比较。在所有考虑的情况下,即使当真正的遗传模型是未知的并且必须根据条件功率估计进行选择时,所提出的测试策略也证明了与标准方法相比功率的显着提高。我们的方法论的实用意义在一项针对儿童哮喘的全基因组关联研究中的应用得以说明,其中我们检测到两个满足标准基因组方法无法检测到的具有全基因组意义的标志物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号