首页> 美国卫生研究院文献>NPJ Breast Cancer >Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis
【2h】

Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis

机译:探索用于解码乳腺癌表型和预后的PET和MRI放射学特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Radiomics is an emerging technology for imaging biomarker discovery and disease-specific personalized treatment management. This paper aims to determine the benefit of using multi-modality radiomics data from PET and MR images in the characterization breast cancer phenotype and prognosis. Eighty-four features were extracted from PET and MR images of 113 breast cancer patients. Unsupervised clustering based on PET and MRI radiomic features created three subgroups. These derived subgroups were statistically significantly associated with tumor grade (p = 2.0 × 10−6), tumor overall stage (p = 0.037), breast cancer subtypes (p = 0.0085), and disease recurrence status (p = 0.0053). The PET-derived first-order statistics and gray level co-occurrence matrix (GLCM) textural features were discriminative of breast cancer tumor grade, which was confirmed by the results of L2-regularization logistic regression (with repeated nested cross-validation) with an estimated area under the receiver operating characteristic curve (AUC) of 0.76 (95% confidence interval (CI) = [0.62, 0.83]). The results of ElasticNet logistic regression indicated that PET and MR radiomics distinguished recurrence-free survival, with a mean AUC of 0.75 (95% CI = [0.62, 0.88]) and 0.68 (95% CI = [0.58, 0.81]) for 1 and 2 years, respectively. The MRI-derived GLCM inverse difference moment normalized (IDMN) and the PET-derived GLCM cluster prominence were among the key features in the predictive models for recurrence-free survival. In conclusion, radiomic features from PET and MR images could be helpful in deciphering breast cancer phenotypes and may have potential as imaging biomarkers for prediction of breast cancer recurrence-free survival.
机译:Radiomics是用于成像生物标记物发现和疾病特定个性化治疗管理的新兴技术。本文旨在确定从PET和MR图像中使用多模态放射学数据在表征乳腺癌表型和预后中的益处。从113位乳腺癌患者的PET和MR图像中提取了84个特征。基于PET和MRI放射特征的无监督聚类创建了三个亚组。这些衍生的亚组与肿瘤等级(p = 2.0×10 -6 ),肿瘤总体分期(p = 0.037),乳腺癌亚型(p = 0.0085)和疾病复发状态具有统计学显着相关性(p = 2.0×10 -6 )。 p = 0.0053)。 PET衍生的一阶统计量和灰度共生矩阵(GLCM)纹理特征可区分乳腺癌肿瘤等级,这一点已通过L2正则化Logistic回归(重复嵌套交叉验证)的结果得到了证实。接收机工作特性曲线(AUC)下的估计面积为0.76(95%置信区间(CI)= [0.62,0.83])。 ElasticNet logistic回归结果表明,PET和MR放射组学具有无复发生存率,其中1的平均AUC为0.75(95%CI = [0.62,0.88])和0.68(95%CI = [0.58,0.81])和2年。 MRI衍生的GLCM逆差矩归一化(IDMN)和PET衍生的GLCM簇突出是无复发生存预测模型的关键特征。总之,PET和MR图像的放射学特征可能有助于破译乳腺癌表型,并可能作为影像学生物标志物用于预测乳腺癌无复发生存。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号