首页> 美国卫生研究院文献>Molecular Cellular Proteomics : MCP >A Comprehensive Open-source Platform for Mass Spectrometry-based Glycoproteomics Data Analysis
【2h】

A Comprehensive Open-source Platform for Mass Spectrometry-based Glycoproteomics Data Analysis

机译:基于质谱的糖代谢组学数据分析的全面开放源代码平台

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Glycosylation is among the most abundant and diverse protein post-translational modifications (PTMs) identified to date. The structural analysis of this PTM is challenging because of the diverse monosaccharides which are not conserved among organisms, the branched nature of glycans, their isomeric structures, and heterogeneity in the glycan distribution at a given site. Glycoproteomics experiments have adopted the traditional high-throughput LC-MSn proteomics workflow to analyze site-specific glycosylation. However, comprehensive computational platforms for data analyses are scarce. To address this limitation, we present a comprehensive, open-source, modular software for glycoproteomics data analysis called GlycoPAT (GlycoProteomics Analysis Toolbox; freely available from ). The program includes three major advances: (1) “SmallGlyPep,” a minimal linear representation of glycopeptides for MSn data analysis. This format allows facile serial fragmentation of both the peptide backbone and PTM at one or more locations. (2) A novel scoring scheme based on calculation of the “Ensemble Score (ES),” a measure that scores and rank-orders MS/MS spectrum for N- and O-linked glycopeptides using cross-correlation and probability based analyses. (3) A false discovery rate (FDR) calculation scheme where decoy glycopeptides are created by simultaneously scrambling the amino acid sequence and by introducing artificial monosaccharides by perturbing the original sugar mass. Parallel computing facilities and user-friendly GUIs (Graphical User Interfaces) are also provided. GlycoPAT is used to catalogue site-specific glycosylation on simple glycoproteins, standard protein mixtures and human plasma cryoprecipitate samples in three common MS/MS fragmentation modes: CID, HCD and ETD. It is also used to identify 960 unique glycopeptides in cell lysates from prostate cancer cells. The results show that the simultaneous consideration of peptide and glycan fragmentation is necessary for high quality MSn spectrum annotation in CID and HCD fragmentation modes. Additionally, they confirm the suitability of GlycoPAT to analyze shotgun glycoproteomics data.
机译:糖基化是迄今为止鉴定出的最丰富和最多样化的蛋白质翻译后修饰(PTM)之一。该PTM的结构分析具有挑战性,因为在生物体之间不保守的多种单糖,聚糖的分支性质,其异构体结构以及给定位点的聚糖分布的异质性。糖组学实验采用传统的高通量LC-MS n 蛋白质组学工作流程来分析位点特异性糖基化。但是,缺乏用于数据分析的综合计算平台。为了解决这一局限性,我们提供了一种用于糖蛋白组学数据分析的全面,开源的模块化软件,称为GlycoPAT(GlycoProteomics Analysis Toolbox;可从处免费获得)。该程序包括三个主要方面:(1)“ SmallGlyPep”,用于MS n 数据分析的糖肽的最小线性表示。这种格式允许在一个或多个位置对肽主链和PTM进行简便的连续片段化。 (2)一种基于“综合得分(ES)”的计算的新颖评分方案,该度量使用互相关和基于概率的分析对N和O连接糖肽的MS / MS谱进行评分和排序。 (3)错误发现率(FDR)计算方案,其中诱骗糖肽是通过同时扰乱氨基酸序列并通过干扰原始糖质量引入人工单糖来创建的。还提供了并行计算工具和用户友好的GUI(图形用户界面)。 GlycoPAT用于以三种常见的MS / MS片段化模式(CID,HCD和ETD)对简单糖蛋白,标准蛋白混合物和人血浆冷沉淀样品上的位点特异性糖基化进行分类。它也用于从前列腺癌细胞的细胞裂解物中鉴定出960种独特的糖肽。结果表明,在CID和HCD片段化模式下,同时考虑肽段和聚糖片段化对于高质量MS n 光谱注释是必要的。此外,他们证实了GlycoPAT适用于分析shot弹枪糖蛋白组学数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号