首页> 美国卫生研究院文献>Methods and Protocols >Fast PET Scan Tumor Segmentation Using Superpixels Principal Component Analysis and K-Means Clustering
【2h】

Fast PET Scan Tumor Segmentation Using Superpixels Principal Component Analysis and K-Means Clustering

机译:使用超像素主成分分析和K-均值聚类的快速PET扫描肿瘤分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Positron Emission Tomography scan images are extensively used in radiotherapy planning, clinical diagnosis, assessment of growth and treatment of a tumor. These all rely on fidelity and speed of detection and delineation algorithm. Despite intensive research, segmentation has remained a challenging problem due to the diverse image content, resolution, shape, and noise. This paper presents a fast positron emission tomography tumor segmentation method using superpixels. Principal component analysis is applied on the superpixels and their average value. The distance vector of each superpixel from the average is computed in the principal components coordinate system. Finally, k-means clustering is applied on the distance vector to recognize tumor and non-tumor superpixels. The proposed approach is implemented in MATLAB 2016A, and promising accuracy with execution time of 2.35 ± 0.26 s is achieved. Fast execution time is achieved since the number of superpixels, and the size of distance vector on which clustering was done are low compared to the number of pixels in the image.
机译:正电子发射断层扫描扫描图像广泛用于放射治疗计划,临床诊断,肿瘤生长评估和治疗。这些都依赖于保真度和检测和描绘算法的速度。尽管进行了深入的研究,但由于图像内容,分辨率,形状和噪声的多样性,分割仍然是一个具有挑战性的问题。本文提出了一种使用超像素的快速正电子发射断层扫描肿瘤分割方法。主成分分析应用于超像素及其平均值。在主成分坐标系中计算每个超像素与平均值的距离矢量。最后,对距离矢量应用k均值聚类以识别肿瘤和非肿瘤超像素。所提出的方法在MATLAB 2016A中实现,并且在2.35±0.26 s的执行时间下实现了有希望的精度。与图像中的像素数相比,由于超像素数以及进行聚类的距离矢量的大小均较小,因此可以实现快速的执行时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号