首页> 美国卫生研究院文献>Light Science Applications >Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe
【2h】

Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe

机译:使用二维原子晶体探针探测等离子体增强的极限

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Achieving larger electromagnetic enhancement using a nanogap between neighboring metallic nanostructures has been long pursued for boosting light–matter interactions. However, the quantitative probing of this enhancement is hindered by the lack of a reliable experimental method for measuring the local fields within a subnanometer gap. Here, we use layered MoS2 as a two-dimensional atomic crystal probe in nanoparticle-on-mirror nanoantennas to measure the plasmonic enhancement in the gap by quantitative surface-enhanced Raman scattering. Our designs ensure that the probe filled in the gap has a well-defined lattice orientation and thickness, enabling independent extraction of the anisotropic field enhancements. We find that the field enhancement can be safely described by pure classical electromagnetic theory when the gap distance is no <1.24 nm. For a 0.62 nm gap, the probable emergence of quantum mechanical effects renders an average electric field enhancement of 114-fold, 38.4% lower than classical predictions.
机译:长期以来,人们一直在使用相邻金属纳米结构之间的纳米间隙来实现更大的电磁增强,以增强光与物质的相互作用。但是,由于缺乏可靠的实验方法来测量亚纳米间隙内的局部场,因此阻碍了这种增强的定量探测。在这里,我们使用分层的MoS2作为镜上纳米粒子纳米天线中的二维原子晶体探针,通过定量表面增强拉曼散射来测量间隙中的等离子体增强。我们的设计可确保填充在间隙中的探头具有明确定义的晶格方向和厚度,从而能够独立提取增强的各向异性场。我们发现,当间隙距离不小于1.24 nm时,可以通过纯经典电磁理论安全地描述场增强。对于0.62nm的间隙,可能出现的量子力学效应使平均电场增强了114倍,比经典的预测低了38.4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号