首页> 中文期刊> 《光:科学与应用(英文版)》 >Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe

Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe

         

摘要

Achieving larger electromagnetic enhancement using a nanogap between neighboring metallic nanostructures has been long pursued for boosting light–matter interactions.However,the quantitative probing of this enhancement is hindered by the lack of a reliable experimental method for measuring the local fields within a subnanometer gap.Here,we use layered MoS2 as a two-dimensional atomic crystal probe in nanoparticle-on-mirror nanoantennas to measure the plasmonic enhancement in the gap by quantitative surface-enhanced Raman scattering.Our designs ensure that the probe filled in the gap has a well-defined lattice orientation and thickness,enabling independent extraction of the anisotropic field enhancements.We find that the field enhancement can be safely described by pure classical electromagnetic theory when the gap distance is no<1.24 nm.For a 0.62 nm gap,the probable emergence of quantum mechanical effects renders an average electric field enhancement of 114-fold,38.4%lower than classical predictions.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号