首页> 美国卫生研究院文献>PLoS Computational Biology >Inferring cell state by quantitative motility analysis reveals a dynamic state system and broken detailed balance
【2h】

Inferring cell state by quantitative motility analysis reveals a dynamic state system and broken detailed balance

机译:通过定量运动分析推断细胞状态揭示了动态状态系统和打破的详细平衡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cell populations display heterogeneous and dynamic phenotypic states at multiple scales. Similar to molecular features commonly used to explore cell heterogeneity, cell behavior is a rich phenotypic space that may allow for identification of relevant cell states. Inference of cell state from cell behavior across a time course may enable the investigation of dynamics of transitions between heterogeneous cell states, a task difficult to perform with destructive molecular observations. Cell motility is one such easily observed cell behavior with known biomedical relevance. To investigate heterogenous cell states and their dynamics through the lens of cell behavior, we developed Heteromotility, a software tool to extract quantitative motility features from timelapse cell images. In mouse embryonic fibroblasts (MEFs), myoblasts, and muscle stem cells (MuSCs), Heteromotility analysis identifies multiple motility phenotypes within the population. In all three systems, the motility state identity of individual cells is dynamic. Quantification of state transitions reveals that MuSCs undergoing activation transition through progressive motility states toward the myoblast phenotype. Transition rates during MuSC activation suggest non-linear kinetics. By probability flux analysis, we find that this MuSC motility state system breaks detailed balance, while the MEF and myoblast systems do not. Balanced behavior state transitions can be captured by equilibrium formalisms, while unbalanced switching between states violates equilibrium conditions and would require an external driving force. Our data indicate that the system regulating cell behavior can be decomposed into a set of attractor states which depend on the identity of the cell, together with a set of transitions between states. These results support a conceptual view of cell populations as dynamical systems, responding to inputs from signaling pathways and generating outputs in the form of state transitions and observable motile behaviors.
机译:细胞群体在多个尺度上显示出异质和动态表型状态。与通常用于探索细胞异质性的分子特征相似,细胞行为是一个丰富的表型空间,可用于鉴定相关的细胞状态。从整个时间过程中的细胞行为推断细胞状态可能使研究异质细胞状态之间转变的动力学成为可能,这是一项具有破坏性分子观察难以完成的任务。细胞运动性就是这样一种容易观察到的具有已知生物医学相关性的细胞行为。为了通过细胞行为的角度研究异质细胞状态及其动力学,我们开发了Heteromotility,这是一种从时光倒流细胞图像中提取定量运动特征的软件工具。在小鼠胚胎成纤维细胞(MEF),成肌细胞和肌肉干细胞(MuSCs)中,异能分析可确定群体中的多种运动表型。在所有三个系统中,单个细胞的运动状态身份是动态的。状态转换的定量揭示了MuSCs通过进行性运动状态向成肌细胞表型进行激活转换。 MuSC激活过程中的转变速率表明非线性动力学。通过概率通量分析,我们发现这种MuSC运动状态系统打破了详细的平衡,而MEF和成肌细胞系统则没有。平衡行为状态转换可以通过平衡形式主义来捕获,而状态之间的不平衡切换违反平衡条件,并且需要外部驱动力。我们的数据表明,调节细胞行为的系统可以分解为一组吸引子状态,这些状态取决于细胞的身份以及状态之间的一组过渡。这些结果支持将细胞群体作为动力系统的概念视图,以响应信号通路的输入并以状态转换和可观察的运动行为的形式生成输出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号