首页> 美国卫生研究院文献>PLoS Computational Biology >Gain control with A-type potassium current: IA as a switch between divisive and subtractive inhibition
【2h】

Gain control with A-type potassium current: IA as a switch between divisive and subtractive inhibition

机译:通过A型钾电流进行增益控制:IA作为分裂抑制和消减抑制之间的转换

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neurons process and convey information by transforming barrages of synaptic inputs into spiking activity. Synaptic inhibition typically suppresses the output firing activity of a neuron, and is commonly classified as having a subtractive or divisive effect on a neuron’s output firing activity. Subtractive inhibition can narrow the range of inputs that evoke spiking activity by eliminating responses to non-preferred inputs. Divisive inhibition is a form of gain control: it modifies firing rates while preserving the range of inputs that evoke firing activity. Since these two “modes” of inhibition have distinct impacts on neural coding, it is important to understand the biophysical mechanisms that distinguish these response profiles. In this study, we use simulations and mathematical analysis of a neuron model to find the specific conditions (parameter sets) for which inhibitory inputs have subtractive or divisive effects. Significantly, we identify a novel role for the A-type Potassium current (IA). In our model, this fast-activating, slowly-inactivating outward current acts as a switch between subtractive and divisive inhibition. In particular, if IA is strong (large maximal conductance) and fast (activates on a time-scale similar to spike initiation), then inhibition has a subtractive effect on neural firing. In contrast, if IA is weak or insufficiently fast-activating, then inhibition has a divisive effect on neural firing. We explain these findings using dynamical systems methods (plane analysis and fast-slow dissection) to define how a spike threshold condition depends on synaptic inputs and IA. Our findings suggest that neurons can “self-regulate” the gain control effects of inhibition via combinations of synaptic plasticity and/or modulation of the conductance and kinetics of A-type Potassium channels. This novel role for IA would add flexibility to neurons and networks, and may relate to recent observations of divisive inhibitory effects on neurons in the nucleus of the solitary tract.
机译:神经元通过将突触输入的弹幕转换成突波活动来处理和传达信息。突触抑制通常会抑制神经元的输出触发活动,通常被归类为对神经元的输出触发活动产生减法或除法作用。减去抑制可通过消除对非优选输入的响应来缩小引起尖峰活动的输入范围。分裂抑制是增益控制的一种形式:它在保持激发激发活动的输入范围的同时修改激发速率。由于抑制的这两种“模式”对神经编码有明显的影响,因此重要的是要了解区分这些反应模式的生物物理机制。在这项研究中,我们使用神经元模型的模拟和数学分析来查找抑制性输入具有减法或除法作用的特定条件(参数集)。重要的是,我们确定了A型钾电流(IA)的新作用。在我们的模型中,这种快速激活,缓慢激活的向外电流充当减法和除法抑制之间的切换。特别是,如果IA强(最大电导率较大)且快(在类似于尖峰启动的时间范围内激活),则抑制作用会对神经放电产生减影作用。相反,如果IA弱或快速激活不足,则抑制作用会对神经放电产生分裂作用。我们使用动力学系统方法(平面分析和快速慢速解剖)解释这些发现,以定义尖峰阈值条件如何取决于突触输入和IA。我们的发现表明,神经元可以通过突触可塑性和/或A型钾通道电导和动力学的调节来“自我调节”抑制的增益控制作用。 IA的这一新作用将增加神经元和网络的灵活性,并可能与最近对孤立道核中神经元分裂抑制作用的观察有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号