首页> 美国卫生研究院文献>PLoS Computational Biology >graph-GPA: A graphical model for prioritizing GWAS results and investigating pleiotropic architecture
【2h】

graph-GPA: A graphical model for prioritizing GWAS results and investigating pleiotropic architecture

机译:graph-GPA:用于确定GWAS结果优先级和研究多效性体系结构的图形模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Genome-wide association studies (GWAS) have identified tens of thousands of genetic variants associated with hundreds of phenotypes and diseases, which have provided clinical and medical benefits to patients with novel biomarkers and therapeutic targets. However, identification of risk variants associated with complex diseases remains challenging as they are often affected by many genetic variants with small or moderate effects. There has been accumulating evidence suggesting that different complex traits share common risk basis, namely pleiotropy. Recently, several statistical methods have been developed to improve statistical power to identify risk variants for complex traits through a joint analysis of multiple GWAS datasets by leveraging pleiotropy. While these methods were shown to improve statistical power for association mapping compared to separate analyses, they are still limited in the number of phenotypes that can be integrated. In order to address this challenge, in this paper, we propose a novel statistical framework, graph-GPA, to integrate a large number of GWAS datasets for multiple phenotypes using a hidden Markov random field approach. Application of graph-GPA to a joint analysis of GWAS datasets for 12 phenotypes shows that graph-GPA improves statistical power to identify risk variants compared to statistical methods based on smaller number of GWAS datasets. In addition, graph-GPA also promotes better understanding of genetic mechanisms shared among phenotypes, which can potentially be useful for the development of improved diagnosis and therapeutics. The R implementation of graph-GPA is currently available at .
机译:全基因组关联研究(GWAS)已鉴定出数以万计的遗传变异与数百种表型和疾病相关联,这为具有新型生物标记物和治疗靶标的患者提供了临床和医学益处。但是,鉴定与复杂疾病相关的风险变体仍然具有挑战性,因为它们经常受到许多影响较小或中等的遗传变体的影响。越来越多的证据表明,不同的复杂性状具有共同的风险基础,即多效性。最近,已经开发了几种统计方法,以通过利用多效性对多个GWAS数据集进行联合分析来提高统计能力,以识别复杂性状的风险变异。尽管与单独的分析相比,这些方法显示出可提高关联映射的统计能力,但它们在可整合的表型数量上仍然受到限制。为了解决这一挑战,在本文中,我们提出了一种新颖的统计框架,即graph-GPA,它使用隐马尔可夫随机场方法集成了用于多种表型的大量GWAS数据集。将graph-GPA应用于12种表型的GWAS数据集的联合分析表明,与基于较少GWAS数据集的统计方法相比,graph-GPA可以提高统计能力以识别风险变异。此外,graph-GPA还促进了对表型之间共享的遗传机制的更好理解,这可能对改进诊断和治疗方法的开发有用。图GPA的R实现当前位于。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号