首页> 美国卫生研究院文献>PLoS Computational Biology >Improved Contact Predictions Using the Recognition of Protein Like Contact Patterns
【2h】

Improved Contact Predictions Using the Recognition of Protein Like Contact Patterns

机译:使用类似蛋白质的接触模式的识别来改善接触预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Given sufficient large protein families, and using a global statistical inference approach, it is possible to obtain sufficient accuracy in protein residue contact predictions to predict the structure of many proteins. However, these approaches do not consider the fact that the contacts in a protein are neither randomly, nor independently distributed, but actually follow precise rules governed by the structure of the protein and thus are interdependent. Here, we present PconsC2, a novel method that uses a deep learning approach to identify protein-like contact patterns to improve contact predictions. A substantial enhancement can be seen for all contacts independently on the number of aligned sequences, residue separation or secondary structure type, but is largest for β-sheet containing proteins. In addition to being superior to earlier methods based on statistical inferences, in comparison to state of the art methods using machine learning, PconsC2 is superior for families with more than 100 effective sequence homologs. The improved contact prediction enables improved structure prediction.
机译:给定足够大的蛋白质家族,并使用全局统计推断方法,可以在蛋白质残基接触预测中获得足够的准确性,以预测许多蛋白质的结构。但是,这些方法没有考虑蛋白质中的接触点既不是随机也不是独立分布的事实,而是实际上遵循由蛋白质结构控制的精确规则,因此是相互依赖的。在这里,我们介绍PconsC2,这是一种使用深度学习方法识别类似蛋白质的接触模式以改善接触预测的新颖方法。可以看到所有接触的显着增强都独立于比对序列的数量,残基分离或二级结构类型,但对于包含β-折叠的蛋白质最大。除了优于基于统计推断的早期方法外,与使用机器学习的最新方法相比,PconsC2对于具有超过100个有效序列同源物的家族而言也更优越。改进的接触预测使得能够改进结构预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号