首页> 美国卫生研究院文献>PLoS Computational Biology >Computational Prediction and Experimental Assessment of Secreted/Surface Proteins from Mycobacterium tuberculosis H37Rv
【2h】

Computational Prediction and Experimental Assessment of Secreted/Surface Proteins from Mycobacterium tuberculosis H37Rv

机译:结核分枝杆菌H37Rv分泌/表面蛋白的计算预测和实验评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The mycobacterial cell envelope has been implicated in the pathogenicity of tuberculosis and therefore has been a prime target for the identification and characterization of surface proteins with potential application in drug and vaccine development. In this study, the genome of Mycobacterium tuberculosis H37Rv was screened using Machine Learning tools that included feature-based predictors, general localizers and transmembrane topology predictors to identify proteins that are potentially secreted to the surface of M. tuberculosis, or to the extracellular milieu through different secretory pathways. The subcellular localization of a set of 8 hypothetically secreted/surface candidate proteins was experimentally assessed by cellular fractionation and immunoelectron microscopy (IEM) to determine the reliability of the computational methodology proposed here, using 4 secreted/surface proteins with experimental confirmation as positive controls and 2 cytoplasmic proteins as negative controls. Subcellular fractionation and IEM studies provided evidence that the candidate proteins Rv0403c, Rv3630, Rv1022, Rv0835, Rv0361 and Rv0178 are secreted either to the mycobacterial surface or to the extracellular milieu. Surface localization was also confirmed for the positive controls, whereas negative controls were located on the cytoplasm. Based on statistical learning methods, we obtained computational subcellular localization predictions that were experimentally assessed and allowed us to construct a computational protocol with experimental support that allowed us to identify a new set of secreted/surface proteins as potential vaccine candidates.
机译:分枝杆菌细胞包膜与结核的致病性有关,因此已成为鉴定和表征表面蛋白的主要目标,并可能在药物和疫苗开发中得到应用。在这项研究中,使用机器学习工具筛选了结核分枝杆菌H37Rv的基因组,该工具包括基于特征的预测子,一般定位子和跨膜拓扑预测子,以鉴定可能分泌到结核分枝杆菌表面或通过细胞外环境分泌的蛋白质。不同的分泌途径。通过细胞分级分离和免疫电子显微镜(IEM)实验评估了一组8种假设分泌/表面候选蛋白的亚细胞定位,以确定此处提出的计算方法的可靠性,使用4种分泌/表面蛋白并经实验确认为阳性对照和2个细胞质蛋白作为阴性对照。亚细胞分级分离和IEM研究提供了证据,证明候选蛋白Rv0403c,Rv3630,Rv1022,Rv0835,Rv0361和Rv0178分泌到分枝杆菌表面或细胞外环境中。还证实了阳性对照的表面定位,而阴性对照位于细胞质上。基于统计学习方法,我们获得了通过实验评估的计算性亚细胞定位预测,并允许我们在实验支持下构建计算方案,从而使我们能够识别出一组新的分泌/表面蛋白作为潜在的候选疫苗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号