首页> 美国卫生研究院文献>PLoS Biology >Stitching together Multiple Data Dimensions Reveals Interacting Metabolomic and Transcriptomic Networks That Modulate Cell Regulation
【2h】

Stitching together Multiple Data Dimensions Reveals Interacting Metabolomic and Transcriptomic Networks That Modulate Cell Regulation

机译:将多个数据维度拼接在一起揭示了相互作用的代谢组学和转录组学网络它们调节细胞调节。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cells employ multiple levels of regulation, including transcriptional and translational regulation, that drive core biological processes and enable cells to respond to genetic and environmental changes. Small-molecule metabolites are one category of critical cellular intermediates that can influence as well as be a target of cellular regulations. Because metabolites represent the direct output of protein-mediated cellular processes, endogenous metabolite concentrations can closely reflect cellular physiological states, especially when integrated with other molecular-profiling data. Here we develop and apply a network reconstruction approach that simultaneously integrates six different types of data: endogenous metabolite concentration, RNA expression, DNA variation, DNA–protein binding, protein–metabolite interaction, and protein–protein interaction data, to construct probabilistic causal networks that elucidate the complexity of cell regulation in a segregating yeast population. Because many of the metabolites are found to be under strong genetic control, we were able to employ a causal regulator detection algorithm to identify causal regulators of the resulting network that elucidated the mechanisms by which variations in their sequence affect gene expression and metabolite concentrations. We examined all four expression quantitative trait loci (eQTL) hot spots with colocalized metabolite QTLs, two of which recapitulated known biological processes, while the other two elucidated novel putative biological mechanisms for the eQTL hot spots.
机译:细胞采用多种水平的调控,包括转录和翻译调控,这些调控驱动核心生物学过程,并使细胞能够对遗传和环境变化做出反应。小分子代谢物是一类重要的细胞中间体,既可以影响细胞调节又是细胞调节的目标。因为代谢产物代表蛋白质介导的细胞过程的直接输出,所以内源性代谢产物的浓度可以紧密反映细胞的生理状态,尤其是与其他分子谱数据整合时。在这里,我们开发并应用一种网络重建方法,该方法可以同时整合六种不同类型的数据:内在代谢物浓度,RNA表达,DNA变异,DNA与蛋白质的结合,蛋白质与代谢物的相互作用以及蛋白质与蛋白质的相互作用数据,以构建概率因果网络阐明了分离酵母种群中细胞调节的复杂性。由于发现许多代谢物都处于强大的遗传控制之下,因此我们能够采用因果调节剂检测算法来鉴定所得网络的因果调节剂,从而阐明了其序列变异影响基因表达和代谢物浓度的机制。我们用共定位的代谢物QTL检查了所有四个表达定量性状基因座(eQTL)热点,其中两个概述了已知的生物过程,而另两个阐明了eQTL热点的新型假定生物学机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号