首页> 美国卫生研究院文献>PLoS Biology >Epigenetic Regulation of Learning and Memory by Drosophila EHMT/G9a
【2h】

Epigenetic Regulation of Learning and Memory by Drosophila EHMT/G9a

机译:果蝇EHMT / G9a对学习和记忆的表观遗传调控

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The epigenetic modification of chromatin structure and its effect on complex neuronal processes like learning and memory is an emerging field in neuroscience. However, little is known about the “writers” of the neuronal epigenome and how they lay down the basis for proper cognition. Here, we have dissected the neuronal function of the Drosophila euchromatin histone methyltransferase (EHMT), a member of a conserved protein family that methylates histone 3 at lysine 9 (H3K9). EHMT is widely expressed in the nervous system and other tissues, yet EHMT mutant flies are viable. Neurodevelopmental and behavioral analyses identified EHMT as a regulator of peripheral dendrite development, larval locomotor behavior, non-associative learning, and courtship memory. The requirement for EHMT in memory was mapped to 7B-Gal4 positive cells, which are, in adult brains, predominantly mushroom body neurons. Moreover, memory was restored by EHMT re-expression during adulthood, indicating that cognitive defects are reversible in EHMT mutants. To uncover the underlying molecular mechanisms, we generated genome-wide H3K9 dimethylation profiles by ChIP-seq. Loss of H3K9 dimethylation in EHMT mutants occurs at 5% of the euchromatic genome and is enriched at the 5′ and 3′ ends of distinct classes of genes that control neuronal and behavioral processes that are corrupted in EHMT mutants. Our study identifies Drosophila EHMT as a key regulator of cognition that orchestrates an epigenetic program featuring classic learning and memory genes. Our findings are relevant to the pathophysiological mechanisms underlying Kleefstra Syndrome, a severe form of intellectual disability caused by mutations in human EHMT1, and have potential therapeutic implications. Our work thus provides novel insights into the epigenetic control of cognition in health and disease.
机译:染色质结构的表观遗传修饰及其对复杂的神经元过程(如学习和记忆)的影响是神经科学领域的新兴领域。然而,关于神经元表观基因组的“作者”及其如何为正确认知奠定基础的知识鲜为人知。在这里,我们解剖了果蝇常染色质组蛋白甲基转移酶(EHMT)的神经元功能,该保守蛋白家族是在赖氨酸9(H3K9)处将组蛋白3甲基化的保守蛋白家族的成员。 EHMT在神经系统和其他组织中广泛表达,但EHMT突变体蝇是可行的。神经发育和行为分析确定EHMT是周围枝晶发育,幼虫运动行为,非联想学习和求爱记忆的调节剂。记忆中对EHMT的需求被映射到7B-Gal4阳性细胞,在成年大脑中主要是蘑菇体神经元。此外,在成年期通过EHMT的重新表达恢复了记忆,表明认知缺陷在EHMT突变体中是可逆的。为了揭示潜在的分子机制,我们通过ChIP-seq生成了全基因组的H3K9二甲基化谱。 EHMT突变体中H3K9甲基化的丢失发生在常染色体基因组的5%处,并且在控制EHMT突变体中受损的神经元和行为过程的不同基因类别的5'和3'端富集。我们的研究将果蝇EHMT识别为认知的关键调节因子,其协调了以经典学习和记忆基因为特征的表观遗传程序。我们的发现与潜在的Kleefstra综合征的病理生理机制有关,Kleefstra综合征是人EHMT1突变引起的智力残疾的一种严重形式,并具有潜在的治疗意义。因此,我们的工作为健康和疾病认知的表观遗传控制提供了新颖的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号