首页> 美国卫生研究院文献>Computational and Mathematical Methods in Medicine >Development of Image Segmentation Methods for Intracranial Aneurysms
【2h】

Development of Image Segmentation Methods for Intracranial Aneurysms

机译:颅内动脉瘤图像分割方法的发展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Though providing vital means for the visualization, diagnosis, and quantification of decision-making processes for the treatment of vascular pathologies, vascular segmentation remains a process that continues to be marred by numerous challenges. In this study, we validate eight aneurysms via the use of two existing segmentation methods; the Region Growing Threshold and Chan-Vese model. These methods were evaluated by comparison of the results obtained with a manual segmentation performed. Based upon this validation study, we propose a new Threshold-Based Level Set (TLS) method in order to overcome the existing problems. With divergent methods of segmentation, we discovered that the volumes of the aneurysm models reached a maximum difference of 24%. The local artery anatomical shapes of the aneurysms were likewise found to significantly influence the results of these simulations. In contrast, however, the volume differences calculated via use of the TLS method remained at a relatively low figure, at only around 5%, thereby revealing the existence of inherent limitations in the application of cerebrovascular segmentation. The proposed TLS method holds the potential for utilisation in automatic aneurysm segmentation without the setting of a seed point or intensity threshold. This technique will further enable the segmentation of anatomically complex cerebrovascular shapes, thereby allowing for more accurate and efficient simulations of medical imagery.
机译:尽管为治疗血管病变的决策过程提供了可视化,诊断和量化的重要手段,但血管分割仍然是一个继续受到众多挑战损害的过程。在这项研究中,我们通过使用两种现有的分割方法来验证八种动脉瘤。区域增长阈值和Chan-Vese模型。通过比较手动分割获得的结果来评估这些方法。基于此验证研究,我们提出了一种新的基于阈值的级别集(TLS)方法,以克服现有问题。通过不同的分割方法,我们发现动脉瘤模型的体积最大差异为24%。还发现动脉瘤的局部动脉解剖形状显着影响这些模拟的结果。然而,相比之下,通过使用TLS方法计算得出的体积差异仍保持在较低的水平,仅为5%左右,从而揭示了在脑血管分割应用中存在的固有局限性。所提出的TLS方法具有在不设置种子点或强度阈值的情况下自动分割动脉瘤的潜力。该技术将进一步实现解剖学复杂的脑血管形状的分割,从而实现医学图像的更准确和有效的模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号